
On Mixture Double Autoregressive Time Series
Models

Guodong LI, Qianqian ZHU, Zhao LIU, and Wai Keung LI
Department of Statistics and Actuarial Science, University of Hong Kong, Hong Kong (gdli@hku.hk;
qianqzhu@hku.hk; zhaoliu@hku.hk; hrntlwk@hku.hk)

This article proposes a mixture double autoregressive model by introducing the flexibility of mixture
models to the double autoregressive model, a novel conditional heteroscedastic model recently proposed
in the literature. To make it more flexible, the mixing proportions are further assumed to be time varying, and
probabilistic properties including strict stationarity and higher order moments are derived. Inference tools
including the maximum likelihood estimation, an expectation–maximization (EM) algorithm for searching
the estimator and an information criterion for model selection are carefully studied for the logistic mixture
double autoregressive model, which has two components and is encountered more frequently in practice.
Monte Carlo experiments give further support to the new models, and the analysis of an empirical example
is also reported.
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1. INTRODUCTION

The conditional heteroscedastic models have become a stan-
dard family of nonlinear time series models since the appear-
ances of the autoregressive conditional heteroscedastic (ARCH)
model (Engle 1982) and the generalized autoregressive con-
ditional heteroscedastic (GARCH) model (Bollerslev 1986).
Among hundreds of members in this family, the double au-
toregressive (AR) model recently has attracted more and more
attentions; see Ling and Li (2008), Zhu and Ling (2013), and
references therein. This model has the form of

yt = θ0 +
p∑

i=1

θiyt−i + εt

√√√√β0 +
p∑

j=1

βjy
2
t−j ,

where β0 > 0, βj ≥ 0, and {εt } are identically and indepen-
dently distributed (iid) random variables with mean zero and
variance one. It is a special case of the AR-ARCH models in
Weiss (1986), and will reduce to the ARCH model when θi’s
are zero. Comparing with the AR-ARCH or ARMA-GARCH
model, the double AR model has two novel properties. First,
it has an even larger parameter space than that of the com-
monly used AR model. For example, when p = 1, the double
AR model may still be stationary even as |θ1| ≥ 1 (Ling 2004).
Second as we know, the finite fourth moment of the ARMA-
GARCH process is unavoidable in deriving the asymptotic dis-
tribution of the Gaussian quasi-maximum likelihood estimation
(Francq and Zakoian 2004), and this makes the available pa-
rameter space much narrower (Li and Li 2009). However, for
the double AR model, we usually do not need to assume the
moment condition on yt to derive the asymptotic normality of
its parameter estimators; see Ling (2007) and Zhu and Ling
(2013).

In the meanwhile, many time series have exhibited a mul-
timodal marginal or conditional distribution. For example, the
classical Canadian lynx data was shown by Tong (1990) to
have a bimodal marginal distribution, and Wong and Li (2000)
showed that a bimodal conditional distribution is more suitable
for certain stock prices since they may rise or decline sharply

when markets become volatile. The mixture AR model was first
proposed by Wong and Li (2000) to capture the phenomenon of
multimodal conditional distributions, and Wong and Li (2001b)
extended it to the mixture AR-ARCH model. The heavy tail
is another important phenomenon in financial time series (Li
and Li 2005, 2008), and the mixture processes can explain it to
some extent; see Zhang, Li, and Yuen (2006) for a discussion
of the mixture GARCH model. Another promising property is
that a mixture of a stationary component and a nonstationary
component may result in a stationary process.

Section 2 proposes a mixture double autoregressive (MDAR)
model by introducing the flexibility of mixture models to the
double AR time series model, a novel conditional heteroscedas-
tic model proposed by Ling (2004). Moreover, it is natural to
expect that some exogenous variables may affect the prediction
and description of the time series via the mixing proportions
(Wong and Li 2001a; Cheng, Yu, and Li 2009). To make our
model more flexible, we further assume that the mixing pro-
portions are time varying with a logit link function. The strict
stationarity and ergodicity of the new model are derived, and we
also discuss its existence of higher order moments. In practice,
the most commonly used mixture model is that with two com-
ponents, and the proposed model then reduces to the logistic
MDAR model. For this special MDAR model, Section 3 derives
the asymptotic normality of its maximum likelihood estimation
(MLE). An expectation–maximization (EM) algorithm is em-
ployed to search for the MLE, and the observed information
matrix as well as an information matrix based on the first-order
derivatives are presented. The Bayesian information criterion
(BIC) is also discussed for model selection in Section 3. Sec-
tion 4 conducts several simulation experiments to study the
finite-sample performance of these proposed inference tools in
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Section 3, and an empirical example is analyzed to demonstrate
the usefulness of the proposed models. All technical proofs are
relegated to the Appendix.

2. MIXTURE DOUBLE AUTOREGRESSIVE MODELS

2.1 Mixture Double Autoregressive Models

Consider a time series {yt } with some exogenous vari-
ables {xt }, where xt may include the lagged values of yt . Let
Ft = σ (yt , yt−1, . . .) and �t = σ (xt , xt−1, . . .) be the σ -fields
generated by {yt , yt−1, . . .} and {xt , xt−1, . . .}, respectively. Sup-
pose that the conditional distribution of yt has the form of

F (y|Ft−1,�t )

=
K∑

k=1

αkt�

⎛⎝y − θk0 − θk1yt−1 − · · · − θkpk
yt−pk√

βk0 + βk1y
2
t−1 + · · · + βkpk

y2
t−pk

⎞⎠ ,

for y ∈ R, (1)

and the mixing proportions follow the logit model (Agresti
2002),

ln(αjt/αKt ) = x′
tϕj , j = 1, . . . , K − 1, (2)

where αKt is the baseline proportion, αkt > 0,
∑K

k=1 αkt = 1,
βk0 > 0, βkj ≥ 0 for all j, and � is the cumulative distribution
function of the standard normal distribution. Note that the logit
model at (2) can be replaced by other link functions. In this
article, model (1) is called the K-component mixture double
autoregressive (MDAR) model.

As for other mixture time series models (Wong and Li 2000,
2001b), the shape of the conditional distribution at (1) changes
over time. Especially, we have that

E(yt |Ft−1,�t ) =
K∑

k=1

αkt (θk0 + θk1yt−1 + · · · + θkpk
yt−pk

)

: =
K∑

k=1

αktμkt ,

and

var(yt |Ft−1,�t ) =
K∑

k=1

αkthkt +
K∑

k=1

αktμ
2
kt −

(
K∑

k=1

αktμkt

)2

,

where hkt = βk0 + βk1y
2
t−1 + · · · + βkpk

y2
t−pk

and the difference
in the conditional means also contributes to the conditional vari-
ance (Wong and Li 2001b).

Note that the conditional distribution at (1) can be multi-
modal, and the quantity E(yn+1|Fn,�n+1) may not be the best
predictor of yn+1. We therefore suggest the mode of the dis-
tribution of yn+1 conditional on Fn and �n+1 to be the pre-
dicted value of yn+1, which is denoted by ŷn(1). The pre-
diction interval with the shortest length can be constructed
by following the highest density region method in Hyndman
(1996), and it will always include ŷn(1) as an interior point.
The corresponding mean squared prediction error has the value
of E{[yn+1 − ŷn(1)]2|Fn,�n+1} ≥ var(yn+1|Fn,�n+1), which
implies that the prediction of E(yn+1|Fn,�n+1) has the small-

est mean squared prediction error although it may not be suitable
here. For general r-step-ahead predictions, we refer to Wong and
Li (2000, 2001b) for more discussions.

2.2 Probabilistic Properties

We first consider the case with constant mixing propor-
tions, and then αkt can be denoted by αk for simplicity, where
k = 1, . . . , K . Moreover, we assume that p1 = · · · = pK = p

without loss of generality.
Let {εt } be iid random variables with the standard normal dis-

tribution, and {zt } be iid random vectors with one element equal
to one and the others equal to zero. Denote zt = (z1t , . . . , zKt )′.
We further assume that P (zkt = 1) = αk for 1 ≤ k ≤ K , and
time series {εt } and {zt } are independent. Then model (1) can
be represented as

yt =
K∑

k=1

zkt

(
θk0 + θk1yt−1 + · · · + θkpyt−p

+ εt

√
βk0 + βk1y

2
t−1 + · · · + βkpy2

t−p

)
, (3)

where {εt } are innovations, and {zkt } are latent variables.
Moreover, let {ξ t } be iid p-dimensional standard normal ran-
dom vectors independent of {yt }, {εt }, and {zt }, where ξ t =
(ξ1t , . . . , ξpt )′. We consider a random coefficient autoregressive
(RCAR) model,

y∗
t =

K∑
k=1

zkt (θk1 + ξ1t

√
βk1)y∗

t−1 + · · ·

+
K∑

k=1

zkt (θkp + ξpt

√
βkp)y∗

t−p

+
K∑

k=1

zkt θk0 +
K∑

k=1

(zkt

√
βk0)εt . (4)

For models (3) and (4), it can be verified that, for any
(a1, . . . , ap)′ ∈ R

p,

F (yt |yt−1 = a1, . . . , yt−p = ap)

= F (y∗
t |y∗

t−1 = a1, . . . , y
∗
t−p = ap).

As a result, their corresponding Markov chains will have the
same transition probability, and then it is equivalent to discuss
the ergodicity of the RCAR model at (4).

Denote At = ∑K
k=1 zktAkt , where

Akt =
⎛⎝ θk1 + ξ1t

√
βk1 . . . θk,p−1 + ξp−1,t

√
βk,p−1 θkp + ξpt

√
βkp

Ip−1 0

⎞⎠ ,

Im is the m × m identity matrix, and 0 is a zero vector. The top
Lyapounov exponent can be defined as

γ = inf

{
1

n
E ln ‖A1 . . . An‖, n ≥ 1

}
,
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Figure 1. Stationarity region for the two-component MDAR model with p = 1 and (α1t , α2t , θ11, β11) = (0.5, 0.5, 0.5, 1). The dashed line is
the stationarity region of the corresponding double AR model.

where ‖M‖ = √
tr(MM ′) for a vector or matrix M, and tr(M)

is the trace of the matrix M.

Theorem 1. Suppose that the mixing proportions {αkt } are
constants and independent of t. Then there exists a strictly sta-
tionary solution {yt } to model (1) if and only if γ < 0, and {yt }
is unique and geometrically ergodic with E|yt |δ < ∞ for some
δ > 0.

Note that E ln+ ‖A1‖ = ∑K
k=1 αkE ln+ ‖Ak1‖ < ∞, where

ln+(x) = max{ln(x), 0}. Then, by the subadditive ergodic theo-
rem (Hall and Heyde 1980, Theorem 7.5), we can show that

γ = lim
n→∞

1

n
ln ‖A1 . . . An‖

with probability one. For the case with p = 1, it holds that γ =∑K
k=1 αkE ln |θk1 + √

βk1ξ1t |, while the stationarity condition
of the kth component is that E ln |θk1 + √

βk1ξ1t | < 0 (Ling
2007). As a result, it is not necessary for each component of the
MDAR processes to be stationary (Wong and Li 2000). As an
illustration, we consider a two-component MDAR model with
p = 1, α1 = α2 = 0.5, and (θ11, β11) = (0.5, 1), and it can be
verified that the first component is stationary. Figure 1 gives
the stationarity region of the MDAR model with respect to
(θ22, β22), and it can be seen that the region is larger than that of
the corresponding double AR model.

Let A⊗m
t be the Kronecker product of m matrices, and ρ(M)

be the modulus of matrix M, which is defined as the maximum
of the absolute eigenvalues of matrix M. We give a sufficient
condition of some higher order moments of the MDAR process
as follows.

Theorem 2. Under the assumptions of Theorem 1, if
ρ(E[A⊗m

t ]) < 1, then the mth-order moment of yt is finite with
m = 2 and 4.

Note that E[A⊗m
t ] = ∑K

k=1 αkE[A⊗m
kt ]. When m = 2, the

condition ρ(E[A⊗2
kt ]) < 1 is necessary and sufficient for the

kth component. Ling (1999) discussed the moment conditions
for the GARCH process, which are similar to that in the above
theorem.

We next consider the general case of model (1), and assume
that xt = (1yt−1, . . . , yt−p)′ without loss of generality. Define

γk = inf

{
1

n
E ln ‖Ak1 . . . Akn‖, n ≥ 1

}
for k = 1, . . . , K.

Corollary 1. There exists a strictly stationary solution {yt } to
model (1) if γk < 0 for all k, and {yt } is unique and geometrically
ergodic with E|yt |δ < ∞ for some δ > 0.

Unlike the results of Theorem 1, this corollary requires all
components to be stationary, and the condition is no longer
necessary. Note that each αkt can arbitrarily approach zero and
one. As a result, it may not be easy to further relax the restriction
of the above corollary. Moreover, if max1≤k≤K ρ(E[A⊗m

kt ]) < 1,
then E|yt |m < ∞ with m = 2 and 4.

3. STATISTICAL INFERENCE FOR LOGISTIC MDAR
MODELS

3.1 Logistic MDAR Models

In practice, the most commonly used mixture model is that
with two components (Wong and Li 2001a), and this section
will focus on the inference of model (1) with two components
only, which can be called the logistic MDAR model (Agresti
2002).

Let yk1t = (1, yt−1, . . . , yt−pk
)′, yk2t = (1, y2

t−1, . . . , y
2
t−pk

)′,
θ k = (θk0, θk1, . . . , θkpk

)′, and βk = (βk0, βk1, . . . , βkpk
)′ with

k = 1 and 2. We can rewrite model (1) with K = 2 into the
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following form,

F (y|Ft−1,�t ) =
2∑

k=1

αkt�

(
y − y′

k1tθ k√
y′

k2tβk

)
, for y ∈ R, (5)

and the mixing proportions satisfying 0 < α1t < 1, α2t = 1 −
α1t and

ln(α1t /α2t ) = x′
tϕ = ϕ0 + ϕ1x1t + · · · + ϕlxlt , (6)

with xt = (1, x1t , . . . , xlt )′ and ϕ = (ϕ0, ϕ1, . . . , ϕl)′.
When xt includes a lagged value of yt only, say yt−d , the

logistic MDAR model defined by (5) and (6) has the following
form:

yt =
{

y′
11tθ1 + εt

√
y′

12tβ1 with probability α1t ,

y′
21tθ2 + εt

√
y′

22tβ2 with probability 1 − α1t ,

where

α1t = [exp{−ϕ0 − ϕ1yt−d} + 1]−1,

and it tends to either zero or one as ϕ1yt−d tends to −∞ or +∞,
respectively. It is noteworthy to point out that the above model
will become the two-regime smooth transition threshold model
(Chan and Tong 1986) if α1t and 1 − α1t are the weights for
the summation of these two components instead. As a result,
the logistic MDAR model may have a performance similar to
that of the smooth transition threshold model, while keeping the
piecewise structures; see also Li et al. (2015).

3.2 Maximum Likelihood Estimation

Denote the parameter vector by λ = (ϕ′, θ ′
1,β

′
1, θ

′
2,β

′
2)′, and

its true value by λ0 = (ϕ′
0, θ

′
01,β

′
01, θ

′
02,β

′
02)′. The parameter

space � ⊂ R
2(p1+p2)+l+5 is a compact set. We further assume

that βkj > 0 for j = 0, 1, . . . , pk and k = 1 and 2, and the iden-
tification condition is given below.

Assumption 1. It holds that (θ ′
01,β

′
01) 
= (θ ′

02,β
′
02) if p1 =

p2, and the first nonzero element of ϕ0 is negative. Moreover,
E(xtx′

t ) is a finite and positive definite matrix.

The condition that (θ ′
01,β

′
01) 
= (θ ′

02,β
′
02) if p1 = p2 makes

sure that the two components have different structures. For the
logistic MDAR model given by (5) and (6), if we exchange
the two components and replace ϕ0 by −ϕ0, then the result-
ing model is still the same. As a result, it is necessary to re-
strict the first nonzero element of ϕ0 to be either negative or
positive.

Let p = max{p1, p2}. Define the functions α1t (ϕ) =
1/[1 + exp(−x′

tϕ)], α2t (ϕ) = 1 − α1t (ϕ), μkt (θ k) = y′
k1tθ k ,

and hkt (βk) = y′
k2tβk with k = 1 and 2. Then, up to a con-

stant, the log-likelihood function of the logistic MDAR model
is Ln(λ) = ∑n

t=p+1 lt (λ), where

lt (λ) = ln

{
2∑

k=1

αkt (ϕ)√
hkt (βk)

exp

[
− (yt − μkt (θ k))2

2hkt (βk)

]}
.

Thus, the MLE can be defined as

λ̂n = argmax
λ∈�

Ln(λ).

Denote

τ1t (λ) = α1t (ϕ) exp{−0.5[yt − μ1t (θ1)]2/h1t (β1)}/√h1t (β1)∑2
k=1 αkt (ϕ) exp{−0.5[yt − μkt (θ k)]2/hkt (βk)}/√hkt (βk)

,

(7)

and τ2t (λ) = 1 − τ1t (λ). The derivative functions of lt (λ) have
the form,

∂lt (λ)

∂ϕ
= [τ1t (λ) − α1t (λ)]xt ,

∂lt (λ)

∂θ k

= τkt (λ)[yt − μkt (θ k)]

hkt (βk)
yk1t ,

and

∂lt (λ)

∂βk

= τkt (λ)

2hkt (βk)

{
[yt − μkt (θ k)]2

hkt (βk)
− 1

}
yk2t

with k = 1 and 2.

Theorem 3. Suppose that the strictly stationary and ergodic
time series {yt } is generated by Equations (5) and (6). If Assump-
tion 1 holds, then λ̂n converges to λ0 in the almost surely sense
as n → ∞. Moreover,

√
n(̂λn − λ0) → N (0, �−1) as n → ∞,

where � = E{[∂lt (λ0)/∂λ][∂lt (λ0)/∂λ′]}.
The multimodal marginal or conditional distribution of a mix-

ture model provides more flexibility in fitting real data. However,
it also leads to some difficulty in directly maximizing the cor-
responding likelihood function, for example, some algorithms
such as the Newton–Raphson may not work well (McLachlan
and Krishnan 1997). Moreover, for the logistic MDAR model,
the number of parameters 2(p1 + p2) + l + 5 usually is large,
and the information matrix E[∂2lt (λ0)/∂λ∂λ′] = −� is not
block diagonal. The EM algorithm is commonly used in the lit-
erature of mixture models to search for the MLE, and it is based
on the idea of replacing the difficult likelihood maximization
with a sequence of easier maximizations; see Dempster, Laird,
and Rubin (1977), McLachlan and Krishnan (1997), McLachlan
and Peel (2000), and references therein. Hence, we will intro-
duce the EM algorithm to search for the MLE λ̂n in the next
subsection.

3.3 EM Algorithm and Information Matrices

By taking into account latent variables {zkt }, we treat
{yt , zt , t = 1, . . . , n} as the complete data and, up to a constant,
the complete log-likelihood function is

Lcn(λ) =
n∑

t=p+1

2∑
k=1

zkt

{
ln[αkt (ϕ)] − 0.5 ln[hkt (βk)]

− 0.5
[yt − μkt (θ k)]2

hkt (βk)

}
.

The iterative EM procedure was demonstrated by Dempster,
Laird, and Rubin (1977) to be flexible for estimating the pa-
rameters in the mixture-type models including the mixture time
series models. We describe this procedure as follows.

• E-step: It holds that E(zkt |λ,Fn,�n) = τkt (λ) with k = 1
and 2, where τ1t (λ) and τ2t (λ) are defined as in (7). Then
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we can replace the missing data {zkt } by their conditional
expectations τkt (λ)’s, that is, the E-equation is the same as
that in (7).

• M-step: Suppose the missing data {zkt } are known by re-
placing them with {τkt (̃λ

i

n)}, where λ̃
i

n is from the last M-
step. We then can estimate the parameter vector λ by max-
imizing the likelihood function

λ̃
i+1
n = argmax

λ∈�

Lcn(λ).

By Theorems 2 and 3 of Wu (1983), the above EM al-
gorithm will monotonically converge to a stationary point of
the log-likelihood function Ln(λ), that is, λ̃

i

n → λ̃n as i → ∞,

Ln(̃λ
i

n) ≤ Ln(̃λ
i+1
n ), and ∂Ln(̃λn)/∂λ = 0; see also McLachlan

and Krishnan (1997). Note that λ̃n may not be the global max-
imum of Ln(λ) (i.e., the MLE λ̂n). As recommended by Wu
(1983) for real applications, we may try several EM iterations
with different starting points, which are representatives of the
parameter space.

In the M-step, it is equivalent to do the following optimiza-
tions,

ϕ̃i+1
n = argmax

ϕ

n∑
t=p+1

{̃τ1t ln[α1t (ϕ)] + τ̃2t ln[α2t (ϕ)]},

and

(̃θ
i+1
kn , β̃

i+1
kn ) = argmax

θ k ,βk

n∑
t=p+1

τ̃kt

{− ln[hkt (βk)]

− [yt − μkt (θ k)]2

hkt (βk)

}
, k = 1 and 2, (8)

where τ̃kt = τkt (̃λ
i

n) with k = 1 and 2. Moreover,

∂Lcn(λ)

∂θ k

=
n∑

t=p+1

zktyt

hkt (βk)
yk1t −

n∑
t=p+1

zkt

hkt (βk)
yk1ty′

k1tθ k.

As a result, we may further simplify the optimization in (8) as
follows,

β̃
i+1
kn = argmax

βk

n∑
t=p+1

τ̃kt

{
− ln[hkt (βk)] − [yt − μ̃kt ]2

hkt (βk)

}
,

and

θ̃
i+1
kn =

⎛⎝ n∑
t=p+1

τ̃kt

hkt (β̃
i+1
kn )

yk1ty′
k1t

⎞⎠−1
n∑

t=p+1

τ̃kt yt

hkt (β̃
i+1
kn )

yk1t ,

where μ̃kt = μkt (̃λ
i

n) with k = 1 and 2. Note that we do not need

to perform the time-consuming optimizations to obtain θ̃
i+1
kn , and

some optimizing algorithms such as the Newton–Raphson can

be employed to calculate ϕ̃i+1
n and β̃

i+1
kn .

Denote the complete information matrix by Ic, and the miss-
ing information matrix by Im. As in Louis (1982) and Wong and
Li (2001a), the observed information matrix can be calculated

by

I1 = Ic − Im = E

(
− ∂2Lcn(λ)

∂λ∂λ
′
∣∣λ,Fn, �n

)
λ̂n

−var
(

∂Lcn(λ)

∂λ

∣∣λ,Fn,�n

)
λ̂n

, (9)

where Ic = diag{I0c, I1c, I2c}, I0c = ∑n
t=p+1 α1t (̂λn)α2t (̂λn)

xtx′
t , I1c = ∑n

t=p+1 τ1t (̂λn)ι1t (̂λn), I2c = ∑n
t=p+1 τ2t (̂λn)ι2t (̂λn),

the symmetric matrices

ιkt (λ)

=
(

h−1
kt (βk)yk1t y′

k1t h−2
kt (βk)[yt − μkt (θk)]yk1t y′

k2t

∗ h−2
kt (βk){[yt − μkt (θk)]2/hkt (βk) − 0.5}yk2t y′

k2t

)

with k = 1 and 2, Im = ∑n
t=p+1 τ1t (̂λn)τ2t (̂λn)ι3t (̂λn)ι′3t (̂λn),

and the vector

ι3t (λ) =
(

x′
t ,

yt − μ1t (θ1)

h1t (β1)
y′

11t ,

{
[yt − μ1t (θ1)]2

h1t (β1)
− 1

}
y′

12t

2h1t (β1)
,

− yt − μ2t (θ2)

h2t (β2)
y′

21t ,−
{

[yt − μ2t (θ2)]2

h2t (β2)
− 1

}
y′

22t

2h2t (β2)

)′
.

Note that, from the proof of Theorem 3, I1 =
−∂2Ln (̂λn)/∂λ∂λ′ = n� + op(n). This information ma-
trix may not be positive definite in practice, and we can
alternatively consider

I2 =
n∑

t=p+1

∂lt (̂λn)

∂λ

∂lt (̂λn)

∂λ′ = n� + op(n).

The derivation of Equation (9) is given in the Appendix.

3.4 Model Selection

For the logistic MDAR model defined as in (5) and (6), we
introduce the Bayesian information criterion (BIC) to select its
orders,

BIC(p) = −2Ln (̂λn) + ln(n − p)[2(p1 + p2) + l + 5], (10)

where p = (l, p1, p2). Let p̂n = argmin0≤l,p1,p2≤pmax BIC(p),
where pmax is a predetermined positive number, and it can be
different for l, p1, and p2.

Theorem 4. Under the assumptions of Theorem 3, if pmax ≥
max{l0, p10, p20}, then P (̂pn = p0) → 1 as n → ∞, where
p0 = (l0, p10, p20) are the true orders, that is, |ϕ0�0 | > 0 and
|θ0kpk0 | + |β0kpk0 | > 0 with k = 1 and 2.

Note that Lcn(λ) with zkt replaced by τkt (̂λn) is also a likeli-
hood function. We can similarly design an information criterion
based on Lcn(λ), however, Wong and Li (2000) showed by sim-
ulations that its performance is poorer than that given by (10).
Some other information criteria such as Akaike information cri-
terion (AIC) can be similarly discussed.

For logistic MDAR models given by (5) and (6), as in Wong
and Li (2001a), we may be more interested in whether the mixing
proportions are time varying, that is, we would like to test the
following null hypothesis,

H0 : ϕ1 = · · · = ϕl = 0.
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Table 1. Estimating results for the MDAR model with mixing proportions being constant and both components being stationary

1st component 2nd component

n θ10 θ11 β10 β11 θ20 θ21 β20 β21 ϕ0

300 Bias 0.0020 0.1462 −0.0347 −0.0196 −0.0010 −0.0073 −0.0045 −0.0292 −0.0777
MSE 0.1677 0.5182 0.0852 0.4609 0.0587 0.1588 0.0338 0.1110 0.9125
ASE1 0.0946 0.3857 0.0618 0.3877 0.0429 0.1187 0.0243 0.0955 0.7271
ASE2 0.1031 0.6025 0.0846 0.6758 0.0448 0.1227 0.0269 0.1102 1.0067

500 Bias −0.0018 0.1263 −0.0163 −0.0466 0.0029 −0.0033 −0.0021 −0.0296 −0.0705
MSE 0.1088 0.4451 0.0679 0.3739 0.0413 0.1213 0.0276 0.0958 0.8115
ASE1 0.0741 0.3371 0.0540 0.3094 0.0327 0.0977 0.0206 0.0793 0.6501
ASE2 0.0763 0.5074 0.0673 0.4894 0.0333 0.1018 0.0222 0.0890 0.8708

1000 Bias 0.0029 0.1226 −0.0011 −0.0778 −0.0007 0.0008 −0.0016 −0.0207 −0.0716
MSE 0.0589 0.3954 0.0468 0.2741 0.0257 0.0831 0.0188 0.0660 0.6825
ASE1 0.0507 0.2742 0.0404 0.2220 0.0228 0.0751 0.0158 0.0613 0.5352
ASE2 0.0516 0.3907 0.0465 0.3189 0.0231 0.0779 0.0171 0.0664 0.6876

The results in Theorem 3 make sure that the likelihood ratio test
can be employed for this purpose and, under the null hypothesis,
the test statistic converges to χ2

l , the chi-squared distribution
with l degrees of freedom, in distribution.

4. NUMERICAL STUDIES

4.1 Simulation Experiments

This subsection constructs three simulation experiments to
study the finite-sample performance of the methodology in the
previous sections: the EM algorithm and information matrices,
the BIC, and the one-step-ahead prediction.

In the first experiment, we consider four data-generating pro-
cesses including two MDAR models with constant mixing pro-
portions and two logistic MDAR models. The MDAR models
with constant mixing proportions are

yt =
⎧⎨⎩ 0.45yt−1 + εt

√
0.2 + 0.6y2

t−1 with probability α1t ,

−0.5yt−1 + εt

√
0.1 + 0.2y2

t−1 with probability α2t ,
(11)

and

yt =
⎧⎨⎩ 1.2yt−1 + εt

√
0.2 + 1.8y2

t−1 with probability α1t ,

−0.5yt−1 + εt

√
0.1 + 0.2y2

t−1 with probability α2t ,
(12)

where {εt } are iid standard normal random variables, α2t =
1 − α1t and

ln(α1t /α2t ) = −0.7.

Note that model (12) is stationary while its first component
is nonstationary since E ln |1.2 + √

1.8ξt | > 0 with ξt being
a standard normal random variable. For the logistic MDAR
models, we use the same settings as in (11) and (12), and the
time varying mixing proportions are generated by

ln(α1t /α2t ) = −0.7 + 0.3yt−1 − 0.5xt , (13)

where {xt } are from an AR(2) model, xt = 0.6xt−1 − 0.2xt−2 +
ηt , with {ηt } being iid standard normal random variables and
independent of {εt }.

We consider three sample sizes, n = 300, 500, and 1000, and
the number of replications is 1000. The EM algorithm in Section
3.3 is employed to search for the MLEs, and the corresponding

standard errors are calculated based on information matrices I1

and I2 (ASE1 and ASE2). Tables 1–4 give their biases (Bias),
mean squared errors (MSE), and two types of standard errors,
ASE1 and ASE2. It can be seen that the bias decreases as sample
size n increases. These two types of standard errors are close to
each other, and we occasionally encounter the problem that the
information matrix I1 is not positive definite. Note that the two
components in model (12) are more separated from each other.
The MSEs in Tables 2 and 4 are close to their two theoretical
versions when the sample size is as small as n = 300, and the
corresponding EM algorithms also converge quickly.

The data-generating process in the second experiment is

yt =
⎧⎨⎩ 0.4 + 0.5yt−1 + εt

√
0.2 + 0.6y2

t−1 with probability α1t ,

−0.4 − 0.8yt−1 + εt

√
0.1 + 0.5y2

t−1 with probability α2t ,
(14)

with the mixing proportions satisfying

ln(α1t /α2t ) = −0.8 − 0.5xt + 0.7yt−1,

where {εt } and {xt } are generated as in the first experiment. It
is noteworthy that this is a logistic MDAR model with orders
(l, p1, p2) = (2, 1, 1), and then we have three orders to select in
total. To save the computing time, the selection in the logistic
function is limited to that of the lagged values of yt , that is, the
exogenous variable xt is kept in the model. We employ the BIC in
Section 3.4 to select p1, p2, and l with 0 ≤ p1, p2 ≤ 2, and 1 ≤
l ≤ 3, and there are 27 candidate models in total. The sample
size is set to 1000, and there are 100 replications generated. As
a result, the BIC correctly identifies all true orders at a rate of
98%, and wrongly selects larger orders for the remaining two
replications.

The third experiment is for the comparison of two different
one-step-ahead prediction methods, and the first one is intro-
duced in Section 2.1. The other one is to use the conditional
mean E(yn+1|Fn,�n+1) to be the predicted value, while the
lower and upper limits of prediction intervals with confidence
level 1 − α take the values of the α/2- and (1 − α/2)-quantiles
of the conditional distribution, respectively. The data-generating
process is as in (11) with time-varying mixing proportions (13),
and all other settings are the same as in the first experiment. We
first estimate the model as in the first experiment, and then per-
form predictions based on estimated models. Six confidence lev-



312 Journal of Business & Economic Statistics, April 2017

Table 2. Estimating results for the MDAR model with constant mixing proportions, one stationary component and one nonstationary
component

1st component 2nd component

n θ10 θ11 β10 β11 θ20 θ21 β20 β21 ϕ0

300 Bias −0.0009 0.2682 −0.0098 −0.3566 0.0004 0.0198 0.0046 0.0062 −0.2025
MSE 0.1133 0.5048 0.0890 0.7106 0.0382 0.0870 0.0251 0.0879 0.4674
ASE1 0.1004 0.4111 0.0754 0.5858 0.0369 0.0782 0.0230 0.0737 0.3923
ASE2 0.1019 0.5291 0.0903 0.8270 0.0369 0.0766 0.0237 0.0783 0.4626

500 Bias −0.0019 0.1886 −0.0085 −0.2317 0.0004 0.0123 0.0035 0.0028 −0.1459
MSE 0.0863 0.4167 0.0653 0.5759 0.0304 0.0626 0.0197 0.0647 0.3750
ASE1 0.0764 0.3407 0.0583 0.4877 0.0287 0.0603 0.0181 0.0584 0.3173
ASE2 0.0776 0.4154 0.0652 0.6232 0.0286 0.0601 0.0183 0.0610 0.3634

1000 Bias −0.0011 0.1121 −0.0049 −0.1527 −0.0003 0.0069 0.0023 0.0021 −0.0876
MSE 0.0542 0.3162 0.0431 0.4349 0.0203 0.0427 0.0136 0.0462 0.2817
ASE1 0.0527 0.2521 0.0407 0.3518 0.0203 0.0430 0.0131 0.0426 0.2346
ASE2 0.0532 0.2895 0.0431 0.4126 0.0202 0.0429 0.0132 0.0436 0.2581

Table 3. Estimating results for the logistic MDAR model with both components being stationary

1st component 2nd component Mixing proportions

n θ10 θ11 β10 β11 θ20 θ21 β20 β21 ϕ0 ϕ1 ϕ2

300 Bias 0.0002 0.0869 −0.0283 −0.0123 −0.0006 −0.0068 −0.0021 −0.0315 −0.1363 0.3460 −0.4305
MSE 0.1596 0.4597 0.0779 0.4191 0.0587 0.1556 0.0332 0.1076 1.8606 1.9164 1.5227
ASE1 0.0905 0.3135 0.0586 0.3279 0.0401 0.1092 0.0229 0.0906 0.9268 0.8978 0.6837
ASE2 0.0937 0.3913 0.0731 0.4796 0.0393 0.1060 0.0234 0.0989 1.1314 1.2360 0.9557

500 Bias −0.0041 0.0846 −0.0101 −0.0452 −0.0012 −0.0005 −0.0001 −0.0255 −0.1054 0.0803 −0.1605
MSE 0.1024 0.3814 0.0627 0.3231 0.0364 0.1105 0.0253 0.0874 0.9793 0.6862 0.5745
ASE1 0.0803 0.3165 0.0575 0.3026 0.0321 0.0942 0.0202 0.0798 0.8002 0.5608 0.5463
ASE2 0.0938 0.4370 0.0703 0.4621 0.0313 0.0913 0.0200 0.0833 0.9080 0.5753 0.6054

1000 Bias −0.0013 0.0847 −0.0021 −0.0697 0.0001 −0.0011 0.0003 −0.0169 −0.0802 0.0280 −0.0558
MSE 0.0562 0.3136 0.0412 0.2368 0.0245 0.0781 0.0178 0.0614 0.6526 0.3461 0.2147
ASE1 0.0509 0.2562 0.0389 0.2175 0.0219 0.0696 0.0148 0.0595 0.5231 0.2842 0.1993
ASE2 0.0511 0.3215 0.0426 0.2833 0.0215 0.0685 0.0147 0.0609 0.5803 0.2793 0.1932

els are considered for prediction intervals, 1 − α = 0.95, 0.90,
0.80, 0.70, 0.60, and 0.50. Their empirical coverage rates (ECR)
and lengths of prediction intervals (LPI) are listed in Table 5.
The mean squared prediction errors (MSPE) are also provided
for each predicted value. It can be seen that MSPEs based on
conditional means are all smaller than those based on condi-

tional modes, which is consistent with the fact that the predicted
value based on the conditional mean has the smallest MSPE.
Moreover, the MSPE decreases as the sample size increases,
and it is because the estimated model is more accurate for larger
sample size. Second, as expected, the LPIs based on the high
density region method have smaller values. Finally, the ECRs

Table 4. Estimating results for the logistic MDAR model with one stationary component and one nonstationary component

1st component 2nd component Mixing proportions

n θ10 θ11 β10 β11 θ20 θ21 β20 β21 ϕ0 ϕ1 ϕ2

300 Bias 0.0017 0.0327 −0.0129 −0.0969 0.0003 0.0041 0.0012 −0.0116 −0.0504 0.0317 −0.0543
MSE 0.1116 0.3207 0.0795 0.5026 0.0428 0.0798 0.0253 0.0714 0.4259 0.2490 0.2714
ASE1 0.0964 0.2790 0.0698 0.4432 0.0392 0.0749 0.0236 0.0661 0.3703 0.1929 0.2438
ASE2 0.0991 0.3202 0.0827 0.5522 0.0386 0.0738 0.0240 0.0698 0.3914 0.2031 0.2435

500 Bias 0.0025 0.0232 −0.0090 −0.0781 −0.0004 −0.0019 0.0017 −0.0054 −0.0514 0.0166 −0.0250
MSE 0.0773 0.2433 0.0602 0.3694 0.0307 0.0605 0.0198 0.0560 0.3083 0.1476 0.1856
ASE1 0.0740 0.2225 0.0540 0.3455 0.0298 0.0581 0.0184 0.0532 0.2821 0.1375 0.1756
ASE2 0.0751 0.2475 0.0599 0.4072 0.0295 0.0579 0.0185 0.0551 0.2975 0.1403 0.1765

1000 Bias −0.0015 −0.0092 −0.0051 −0.0290 0.0008 −0.0014 0.0006 −0.0045 −0.0037 0.0070 −0.0151
MSE 0.0523 0.1478 0.0401 0.2385 0.0218 0.0420 0.0135 0.0384 0.1927 0.0963 0.1253
ASE1 0.0514 0.1531 0.0379 0.2386 0.0211 0.0411 0.0131 0.0382 0.1928 0.0940 0.1216
ASE2 0.0521 0.1632 0.0403 0.2612 0.0210 0.0410 0.0132 0.0389 0.1983 0.0952 0.1217
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Table 5. One-step-ahead predicting results including empirical coverage rates (ECR), lengthes of prediction intervals (LPI), and mean squared
prediction errors (MSPE)

Confidence level

n 0.95 0.90 0.80 0.70 0.60 0.50

Prediction with the conditional mode
300 ECR 0.955 0.911 0.820 0.721 0.619 0.504

LPI 2.049 1.683 1.287 1.027 0.823 0.640
MSPE 0.393

500 ECR 0.954 0.905 0.797 0.691 0.600 0.498
LPI 2.009 1.660 1.267 1.010 0.809 0.629
MSPE 0.369

1000 ECR 0.950 0.901 0.800 0.695 0.601 0.490
LPI 1.938 1.599 1.216 0.974 0.777 0.616
MSPE 0.326

Prediction with the conditional mean
300 ECR 0.955 0.916 0.818 0.730 0.620 0.502

LPI 2.075 1.714 1.309 1.044 0.838 0.667
MSPE 0.369

500 ECR 0.951 0.902 0.798 0.709 0.599 0.502
LPI 2.020 1.673 1.282 1.026 0.827 0.659
MSPE 0.305

1000 ECR 0.948 0.898 0.802 0.695 0.591 0.495
LPI 1.948 1.611 1.232 0.983 0.791 0.630
MSPE 0.291

are close to their corresponding nominal values when the sample
size is as small as n = 300.

4.2 An Empirical Example

This subsection considers the weekly exchange rates of U.S.
Dollar (USD) to Japanese Yen (JPY) from February 16, 2008
to February 9, 2013, and there are 262 observations in total.
We focus on the sequence of log returns, and its time plot is
given in Figure 3. The fitted kernel density and the Hill es-
timator (Hill 1975, 2010) of these log returns are presented
in Figure 2. We can observe a bimodal marginal distribution,
and the estimated tail index α̂ is clearly not greater than one.
As a result, a mixture model is preferred, and it seems not
suitable to interpret the volatility as well as the conditional
mean structure by an AR-ARCH model since its inference usu-
ally needs a finite fourth-order moment (Francq and Zakoian
2004).

We consider the logistic MDAR model to the sequence of log
returns {yt } to further take into account the interest rates since
they are closely related to exchange rates. The interest rate
spread is defined as the difference between the federal funds
rate in U.S. and the interest rate in Japan, and they can be
downloaded from the websites of the Federal Reserve Bank
of New York (http://www.federalreserve.gov/econresdata/) and
the Bank of Japan (http://www.stat-search.boj.or.jp/ssi/mtshtml/
w1_en.html), respectively. There is an obvious trend in the se-
quence of interest rate spreads, especially during the period of
the financial crisis at 2008, and its differenced sequence {xt } is
then introduced to the mixing proportions of the logistic MDAR
model; see Figure 2 for its time plot.

The BIC is employed to select the orders with 1 ≤ l, p1, p2 ≤
3, and there are 33 candidate models in total. The best-fitted

model has the form of

yt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

εt {1.5101 × 10−6
1.7434×10−7 + 0.36770.0088y

2
t−1

+0.31680.0069y
2
t−2}1/2

−0.01080.0001 + 0.17770.0106yt−1 + 0.05040.0081yt−2

with probability α1t

εt {8.7764 × 10−5
1.2331×10−6 + 0.17250.0057y

2
t−1}1/2

+0.00290.0001 + 0.21010.0055yt−1

with probability α2t

with the mixing proportions satisfying α1t = 1 − α2t and

ln(α1t /α2t ) = −1.28580.0388 − 27.73331.0512xt−1,

where standard errors of parameter estimates are given in sub-
scripts, and are calculated based on the information matrix I1 at
Section 3.3. The estimated coefficients in the above model are
all significant at the level of 5%.

The fitted values of the probability α1t for the first compo-
nent are presented in Figure 3, and they roughly have values
around 0.2 after the financial crisis. Note that the volatility of
the first component has a longer persistence than that of the
second component. For the first 50 time points at the period
of the financial crisis, both exchange rates and interest rates
have much higher volatility, and the values of α̂1t also vary
dramatically. This may be due to the unstable financial environ-
ment during the financial crisis. Figure 3 also gives the density
of the predictive conditional distribution F (yt+1|Ft , �t+1) at
t = 34, and a bimodal feature can be very clearly observed.
Moreover, it is skewed to the right, and this implies that the US
Dollar is relatively strong compared with the Japanese Yen at
that time point. Finally, Figure 3 lists the estimated 95% one-
step ahead prediction intervals based on the estimated model. In
sum, we may conclude the usefulness of the proposed MDAR
models.

http://www.federalreserve.gov/econresdata/
http://www.stat-search.boj.or.jp/ssi/mtshtml/w1_en.html
http://www.stat-search.boj.or.jp/ssi/mtshtml/w1_en.html
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Figure 2. Differenced sequence of interest rate spreads (left panel), fitted kernel density (middle panel) and Hill estimator (right panel), of
log returns for the weekly exchange rates of U.S. Dollar (USD) to Japanese Yen (JPY) from February 16, 2008, to February 9, 2013.

Figure 3. Time plot of log returns with estimated 95% one-step ahead prediction intervals (left panel), the probability of the first component
α̂1t (middle panel) and the conditional density of F (yt+1|Ft , �t+1) at time point t = 34 (right panel).

5. CONCLUSIONS

The double AR model (Ling 2004) has been shown to have
a better performance in interpreting the heavy-tailed time series
by allowing a wider parameter space, while these sequences
may have a multimodal marginal or conditional distribution.
The proposed MDAR model, especially the logistic MDAR
model, is then suggested to interpret such type of time series,
and their probabilistic properties and statistical inference are
also derived. These models greatly extend the usefulness of the
double AR model. Their potential in application is illustrated
by the USD/JPY exchange rates returns.

APPENDIX: TECHNICAL DETAILS

This appendix gives proofs of Theorems 1–4, Corollary 1, and the
derivation of Equation (9).

Proof of Theorem 1. Let yt = (yt , yt−1, . . . , yt−p+1)′, and denote by
(Rp,Bp, νp) the state space of process {yt }, where Bp is the class of
Borel sets of R

p, and νp is the Lebesgue measure on (Rp,Bp). Then
the process {yt } is a homogeneous Markov chain with the transition

probability

P (a, A) =
∫

m(A)

K∑
k=1

αk√
β ′

ka2

φ

(
y − θ ′

ka1√
β ′

ka2

)
dy,

for a ∈ R
p and A ∈ Bp, (A.1)

where a = (ap, . . . , a1)′, a1 = (1, a′)′, a2 = (1, a2
p, . . . , a2

1 )′, θ k =
(θk0, . . . , θkp)′, βk = (βk0, . . . , βkp)′, φ(·) is the density function of the
standard normal distribution, and m(·) is the projection map onto the
first coordinate, that is, m(a) = ap . Note that the density function φ(·) is
positive everywhere and then, from (A.1), P (a, A) > 0 for each a ∈ R

p

whenever νp(A) > 0. It is implied that {yt } is νp-irreducible.
We first prove the sufficiency. Since γ < 0, there exists an integer s

such that E ln ‖A1 . . . As‖ < 0. Let Ãt = At . . . At−s+1. It can be shown
that the function q(x) = E‖Ãt‖x is continuous and differentiable on
[0, 2) with limx→0 q ′(x) = E ln ‖Ãt‖ < 0, where q ′(x) is the deriva-
tive function of q(x). Then there exists a constant 0 < δ < 1 such that
E‖Ãt‖δ < q(0) = 1. Let g(x) = 1 + ‖x‖δ . Consider a random coeffi-
cient autoregressive (RCAR) model,

y∗
t = Aty∗

t−1 + εt , (A.2)

where y∗
t = (y∗

t , y
∗
t−1, . . . , y

∗
t−p+1)′ and εt = (

∑K

k=1 zkt [θk0 +√
βk0εt ], 0, . . . , 0)′. For a compact set G with νp(G) > 0, by a method
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similar to the proof of Theorem 2.1 in Ling (2007), we can show that

E[g(y∗
st )|y∗

s(t−1) = x] ≤ (1 − ε)g(x), x ∈ Gc, (A.3)

E[g(y∗
st )|y∗

s(t−1) = x] ≤ M, x ∈ G (A.4)

for some 0 < ε < 1 and M > 0, where {y∗
st } is the s-step Markov chain

of {y∗
t } in (A.2). Note that {y∗

t } is a homogenous Markov chain with
the same transition probability as that in (A.1), and then Equations
(A.3) and (A.4) still hold for {yst }, the s-step Markov chain of {yt }.
By Theorem 4 (ii) of Tweedie (1983) and Theorems 1 and 2 of Feigin
and Tweedie (1985), we can show that process {yst } is geometrically
ergodic with a unique stationary distribution π (·) and

∫ ‖yst‖δdπ ≤∫
Rpg(x)π (dx) < ∞. Finally, by Lemma 3.1 of Tjostheim (1990), it

can be shown that yt or yt is geometrically ergodic with E|yt |δ < ∞.
We next consider the necessity. Suppose that {yt } is the strictly sta-

tionary solution to the MDAR model (1) with a stationary distribution
π (·). Then there also exists a strictly stationary solution to the RCAR
model (A.2) since their transition probabilities are the same. Consider
the p-step Markov chain {y∗

pt },

y∗
tp = Ãtpy∗

(t−1)p + ε∗
t , (A.5)

where s = p and ε∗
t = εtp + ∑p−1

i=1

∏i−1
j=0 Atp−jεtp−i . By a method sim-

ilar to the proof of Theorem 2.1 in Ling (2007), we can verify that model
(A.5) is irreducible, and the corresponding process {y∗

pt } is its nonan-
ticipative strictly stationary solution. By Theorem 2.5 of Bougerol and
Picard (1992), it holds that

γ̃ = inf{t−1E ln ‖ÃpÃ2p . . . Ãtp‖, t ≥ 1} < 0.

Note that ÃpÃ2p . . . Ãtp = A1 . . . Atp , and then γ < p−1γ̃ < 0. We
accomplish the proof of Theorem 1. �

Proof of Theorem 2. From the proof of Theorem 1, we know that the
MDAR process {yt } and the RCAR process {y∗

t } at (A.2) have the same
transition probability. Then it is sufficient to show that E‖y∗

t ‖m < ∞
with m = 2 and 4, and this can be accomplished by a method similar
to Ling (1999). �

Proof of Theorem 3. For these functions in lt (λ) and ∂lt (λ)/∂λ, we
have their derivatives as follows,

∂μkt (θ k)

∂θ k

= yk1t ,
∂hkt (βk)

∂βk

= yk2t ,

∂α1t (ϕ)

∂ϕ
= α1t (ϕ)α2t (ϕ)xt ,

∂α2t (ϕ)

∂ϕ
= −α1t (ϕ)α2t (ϕ)xt ,

∂ ln[α1t (ϕ)]

∂ϕ
= α2t (ϕ)xt ,

∂ ln[α2t (ϕ)]

∂ϕ
= −α1t (ϕ)xt ,

∂τ1t (λ)

∂ϕ
= τ1t (λ)τ2t (λ)xt ,

∂τ1t (λ)

∂θ k

= (−1)k+1τ1t (λ)τ2t (λ)
[yt − μkt (θ k)]

hkt (βk)
yk1t ,

∂τ1t (λ)

∂βk

= (−1)k+1τ1t (λ)τ2t (λ)
1

2hkt (βk)

×
{

[yt − μkt (θ k)]2

hkt (βk)
− 1

}
yk2t ,

and ∂τ2t (λ)/∂λ = −∂τ1t (λ)/∂λ, where k = 1 and 2. Note that
E‖xt‖2 < ∞. By a method similar to Ling (2007), we can verify that

E sup
λ∈�

∥∥∥∥∂lt (λ)

∂λ

∥∥∥∥2

< ∞ and E sup
λ∈�

∥∥∥∥∂2lt (λ)

∂λ∂λ′

∥∥∥∥2

< ∞.

We first prove the consistency and, by following the standard ar-
guments in Huber (1967), it is sufficient to verify the following two
claims:

(i) E[lt (λ)] ≤ E[lt (λ0)] for all λ ∈ �, and the equality holds if and
only if λ = λ0.

(ii) For any λ ∈ �, define an open neighborhood of λ with radius
0 < η < 1 as Uλ(η) = {λ∗ ∈ � : ‖λ∗ − λ‖ < η}. Then it holds
that E supλ∗∈Uλ(η) |lt (λ∗) − lt (λ)| → 0 as η → 0.

Denote

ft (y, λ) =
2∑

k=1

αkt (ϕ)√
hkt (βk)

exp

[
− (y − μkt (θ k))2

2hkt (βk)

]
.

Note that lt (λ) = ln[ft (yt , λ)], and ft (y,λ) is the conditional density
of the logistic MDAR process at (5). By Jensen’s inequality, it holds
that

E[lt (λ)] − E[lt (λ0)] = E

{
E

[
ln

ft (yt , λ)

ft (yt , λ0)
|Ft−1, �t

]}
≤ E

{
ln E

[
ft (yt , λ)

ft (yt , λ0)
|Ft−1, �t

]}
= 0,

where the equality holds if and only if

ft (y, λ) = ft (y,λ0) with probability one. (A.6)

By conditioning ft (y, λ) and ft (y, λ0) on σ -fieldsFt−1 and �t , together
with the assumption of ϕ0 ≤ 0, we can obtain from (A.6) that, with
probability one,

(α1t (ϕ),μ1t (θ1), h1t (β1), α2t (ϕ), μ2t (θ2), h2t (β2))

= (α1t (ϕ0), μ1t (θ01), h1t (β01), α2t (ϕ0), μ2t (θ02), h2t (β02)),

or equivalently

x′
t (ϕ − ϕ0) = y′

k1t (θ k − θ0k) = y′
k2t (βk − β0k) = 0, k = 1 and 2.

This implies that λ = λ0, and hence we complete the proof of Claim
(i).

Due to the compactness of the parameter space �, there exists a
constant cβ > 0 such that βkj ≥ cβ with j = 0, 1, . . . , pk and k = 1
and 2. Note that 0 < τkt (λ) < 1, 0 < αkt (ϕ) < 1, and y2

t−j /hkt (βk) <

β−1
kj ≤ c−1

β with 1 ≤ j ≤ pk , where k = 1 and 2. It can be shown that
E supλ∈� ‖∂lt (λ)/∂λ‖ < ∞, and

E sup
λ∗∈Uλ(η)

|lt (λ∗) − lt (λ)| ≤ E sup
λ∈�

∥∥∥∥∂lt (λ)

∂λ

∥∥∥∥ · η.

Hence, Claim (ii) holds, and we accomplish the proof of consistency.
We now consider the asymptotic normality. The second-order deriva-

tive function of lt (λ) has the form of

∂2lt (λ)

∂λ∂λ′ = τ1t (λ)τ2t (λ)ι3t (λ)ι′3t (λ)

− diag{α1t (λ)α2t (λ)xtx′
t , τ1t (λ)ι1t (λ), τ2t (λ)ι2t (λ)},

where the symmetric matrices

ιkt (λ) =
(

h−1
kt (βk)yk1t y′

k1t h−2
kt (βk)[yt − μkt (θk)]yk1t y′

k2t

∗ h−2
kt (βk){[yt − μkt (θk)]2/hkt (βk) − 0.5}yk2t y′

k2t

)
with k = 1 and 2, and

ι3t (λ) =
(

x′
t ,

yt − μ1t (θ1)

h1t (β1)
y′

11t ,

{
[yt − μ1t (θ1)]2

h1t (β1)
− 1

}
y′

12t

2h1t (β1)
,

− yt − μ2t (θ2)

h2t (β2)
y′

21t , −
{

[yt − μ2t (θ2)]2

h2t (β2)
− 1

}
y′

22t

2h2t (β2)

)′
;

see also Section 3.3. Note that supλ∈� ‖yk2t /hkt (βk)‖ ≤ c−1
β

√
pk , and

it then can be verified that

E sup
λ∈�

∥∥∥∥∂2lt (λ)

∂λ∂λ′ − E

[
∂2lt (λ)

∂λ∂λ′

]∥∥∥∥ ≤ 2E sup
λ∈�

∥∥∥∥∂2lt (λ)

∂λ∂λ′

∥∥∥∥ < ∞.
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Moreover, the process {yt } is strictly stationary and ergodic. Applying
Theorem 3.1 of Ling and McAleer (2003) and Lemma B.1 of Ling
(2007), we can obtain that

sup
λ∈�

∥∥∥∥∥∥ 1

n

n∑
t=p+1

∂2lt (λ)

∂λ∂λ′ − E

[
∂2lt (λ)

∂λ∂λ′

]∥∥∥∥∥∥ = op(1). (A.7)

Suppose that there exists a constant vector a = (c′, a′
1, b′

1, a′
2, b′

2)′ ∈
Rl+2p1+2p2+5 such that

0 = a′E
[

∂2lt (λ0)

∂λ∂λ′

]
a = a′E

[
∂lt (λ0)

∂λ

∂lt (λ0)

∂λ′

]
a = E

[
a′ ∂lt (λ0)

∂λ

]2

.

For simplicity, we denote τkt = τkt (λ0), αkt = αkt (λ0), μkt = μkt (θ0k),
and hkt = hkt (β0k) with k = 1 and 2. Note that τ1t > 0 and

τ2t

τ1t

= α2t

α1t

(
h1t

h2t

)1/2

exp

{
− (yt − μ2t )2

2h2t

+ (yt − μ1t )2

2h1t

}
. (A.8)

It then holds that, with probability one,

0 = τ−1
1t · a′ ∂lt (λ0)

∂λ

= τ2t

τ1t

{
b′

2y22t

2h2
2t

(yt − μ2t )
2 + a′

2y21t

h2t

(yt − μ2t )α1tc′xt − b′
2y22t

2h2t

}
+b′

1y12t

2h2
1t

(yt − μ1t )
2 + a′

1y11t

h1t

(yt − μ1t ) + (1 − α1t )c′xt − b′
1y12t

2h1t

.

By conditioning the above equation on σ -fields Ft−1 and �t , together
with (A.8) and the fact that the conditional distribution of yt is a mix-
ture Gaussian, we can obtain that c′xt = a′

kyk1t h
−1/2
kt = b′

kyk2t h
−1
kt = 0

with probability one. Note that matrices E(xtx′
t ), E(h−1

kt yk1ty′
k1t ), and

E(h−2
kt yk2ty′

k2t ) are all positive definite. Hence, a is a zero vector and
E[∂2lt (λ0)/(∂λ∂λ′)] is then a positive definite matrix. Moreover, by
Taylor expansion,

0 = ∂Ln (̂λn)

∂λ
= ∂Ln(λ0)

∂λ
+ ∂2Ln(λ∗

n)

∂λ∂λ′ (̂λn − λ0),

where λ∗
n is between λ̂n and λ0. Together with (A.7), the consistency

of λ̂n, the positive definiteness of E[∂2lt (λ0)/(∂λ∂λ′)] and the central
limit theorem, we finish the proof for asymptotic normality. �

Proof of Theorem 4. We first consider the case with p > p0, that
is, l ≥ l0, p1 ≥ p10, p2 ≥ p20 and at least one inequality holds, where
p = (l, p1, p2) and p0 = (l0, p10, p20). Notations λp, λ

p
0 , and λ̂

p
n are

employed to emphasize their dependence on the orders p. Note that the
model with orders p corresponds to a bigger model, and it holds that

lt (λ
p
0) = lt (λ

p0
0 ) and Ln(λp

0) = Ln(λp0
0 ). (A.9)

Let v = n1/2(̂λ
p0
n − λ

p0
0 ) and, by a method similar to Li and Li (2008),

we can show that

Ln (̂λ
p0
n ) − Ln(λp0

0 ) = Ln(λp0
0 + n−1/2v) − Ln(λp0

0 )

= v′n−1/2∂Ln(λp0
0 )/∂λp + v′�v

+op(1) = Op(1) (A.10)

since n−1/2∂Ln(λp0
0 )/∂λp = Op(1). Similarly, Ln (̂λ

p
n) − Ln(λp

0) =
Op(1). As a result,

Ln (̂λ
p
n) − Ln (̂λ

p0
n ) = [Ln (̂λ

p
n) − Ln(λp

0)] − [Ln (̂λ
p0
n ) − Ln(λp0

0 )]

+[Ln(λp
0) − Ln(λp0

0 )] = Op(1),

and

BIC(p) − BIC(p0) = −2[Ln (̂λ
p
n) − Ln (̂λ

p0
n )]

+(p∗ − p∗
0) ln(n − p)

= Op(1) + (p∗ − p∗
0) ln(n − p) → +∞

as n → +∞, where p∗ = 2(p1 + p2) + l + 5, p∗
0 = 2(p10 + p20) +

l0 + 5 and p∗ − p∗
0 > 0.

We next consider the case with p < p0, that is, l < l0, p1 < p10,
or p2 < p20. Let λ

p
0 = argmax E[lt (λ

p)] and, by a method similar to
the proof of Theorem 3 and together with (A.10), we can show that√

n(̂λ
p
n − λ

p
0) = Op(1) and

Ln (̂λ
p
n) − Ln(λp

0) = Op(1). (A.11)

Let pmax = max(p, p0) = [max(l, l0), max(p1, p10), max(p2, p20)].

Denote by λ
pmax
0 and λ

pmax
0

0 the parameter vectors of λ
p
0 and λ

p0
0 with

extra parameters being zero, respectively. From the conclusion of Claim
(i) in the proof of Theorem 3 and by a method similar to (A.9) and the

ergodic theorem, we have that c = E[lt (λ
pmax
0 )] − E[lt (λ

pmax
0

0 )] < 0,
and

Ln(λp
0) − Ln(λp0

0 ) = Ln(λpmax
0 ) − Ln(λ

pmax
0

0 ) = cn + op(n).

As a result, by (A.10)–(A.11),

Ln (̂λ
p
n) − Ln (̂λ

p0
n ) = [Ln (̂λ

p
n) − Ln(λp

0)] − [Ln (̂λ
p0
n ) − Ln(λp0

0 )]

+[Ln(λp
0) − Ln(λp0

0 )]

= Op(1) + op(n) + cn

and

BIC(p) − BIC(p0) = −2[Ln (̂λ
p
n) − Ln (̂λ

p0
n )] + (p∗ − p∗

0) ln(n − p)

= −2cn + Op(1) + op(n) + O(ln n) → +∞

as n → +∞. This completes the proof. �
Proof of Corollary 1. We consider an autoregressive model,

y∗
t =

K∑
k=1

zktAkty∗
t−1 + εt , (A.12)

where P (zkt = 1) = αkt for 1 ≤ k ≤ K , ln(αjt/αKt ) = x∗′
t ϕj for 1 ≤

j ≤ K − 1, x∗
t = (1, y∗

t−1, . . . , y
∗
t−p)′, y∗

t = (y∗
t , y

∗
t−1, . . . , y

∗
t−p+1)′,

and εt = (
∑K

k=1 zkt [θk0 + √
βk0εt ], 0, . . . , 0)′.

For each k, since γk < 0, there exists an integer sk such that
E ln ‖Ak1 . . . Aksk ‖ < 0. Let s = ∏K

k=1 sk and g(x) = 1 + ‖x‖δ with
0 < δ < 1. By the proof of Theorem 1, we can verify the inequali-
ties at (A.3) and (A.4), and the remaining proof can be accomplished
similarly. �

Derivations of Equation (9). Let

lct (λ) =
2∑

k=1

zkt

{
ln[αkt (ϕ)] − 0.5 ln[hkt (βk)] − 0.5

[yt − μkt (θ k)]2

hkt (βk)

}
,

and then Lcn(λ) = ∑n

t=p+1 lct (λ). The derivative functions of lct (λ)
have the form of

∂lct (λ)

∂ϕ
= [z1t − α1t (ϕ)]xt ,

∂lct (λ)

∂θ k

= zkt

yt − μkt (θ k)

hkt (βk)
yk1t ,

∂lct (λ)

∂βk

= zkt

{
[yt − μkt (θ k)]2

hkt (βk)
− 1

}
yk2t

2hkt (βk)
,
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and

∂2lct (λ)

∂ϕ∂ϕ′ = −α1t (ϕ)α2t (ϕ)xtx′
t ,

∂2lct (λ)

∂βk∂θ ′
k

= −zkt

yt − μkt (θ k)

h2
kt (βk)

yk2ty′
k1t ,

∂2lct (λ)

∂θ k∂θ ′
k

= − zkt

hkt (βk)
yk1ty′

k1t ,

∂2lct (λ)

∂βk∂β ′
k

= − zkt

h2
kt (βk)

{
[yt − μkt (θ k)]2

hkt (βk)
− 1

2

}
yk2ty′

k2t ,

∂2lct (λ)

∂ϕ∂θ ′
k

= ∂2lct (λ)

∂ϕ∂β ′
k

= ∂2lct (λ)

∂θ1∂θ ′
2

= ∂2lct (λ)

∂θ 1∂β ′
2

= ∂2lct (λ)

∂β1∂θ ′
2

= ∂2lct (λ)

∂β1∂β ′
2

= 0

with k = 1 and 2. Note that {zt } are independent conditional on the
σ -fields Fn and �n; see Wong and Li (2000). Thus,

var

(
∂Lcn(λ)

∂λ

∣∣λ,Fn, �n

)
=

n∑
t=p+1

var

(
∂lct (λ)

∂λ

∣∣λ,Fn, �n

)
.

Together with the fact that var(zkt |λ,Fn, �n) = τ1t (λ)τ2t (λ) and
cov(z1t , z2t |λ,Fn, �n) = −τ1t (λ)τ2t (λ), we can derive the results in
(9). �
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