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Abstract

A buffered double autoregressive (BDAR) time series model is proposed in this paper to

depict the buffering phenomenon of conditional mean and conditional variance in time

series. To build this model, a novel flexible regime switching mechanism is introduced

to modify the classical threshold time series model by capturing the stickiness of signal.

Besides, considering the inadequacy of traditional models under the lack of information, a

signal retrospection is run in this model to provide a more accurate judgment. Moreover,

formal proofs suggest strict stationarity and geometric ergodicity of BDAR model under

several sufficient conditions. A Gaussian quasi-maximum likelihood estimation (QMLE)

is employed and the asymptotic distributions of its estimators are derived. It has been

demonstrated that the estimated thresholds of the BDAR model are n-consistent, each of

which converges weakly to a functional of a two-sided compound Poisson process. The

remaining parameters are
√
n-consistent and asymptotically normal. Furthermore, a model

selection criteria and its asymptotic property have been established. Simulation studies

are constructed to evaluate the finite sample performance of QMLE and model selection

criteria. Finally, an empirical analysis of Hang Seng Index (HSI) using BDAR model reveals

the asymmetry of investors’ preference over losses and gains as well as the asymmetry of

volatility structure.
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1 Introduction

A buffering phenomenon refers to the variable of interest sticks in the previous state when the

variable of signal stays in a certain uninformative region. Consider, for example, a decision

making of treatment plan for patients with diabetes. The up-crossing of blood sugar level over

a certain high level rU will intrigue an inpatient treatment, while a blood sugar level lower than

rL will evoke outpatient treatment. A doctor may easily choose between two treatment plans

when a patient’s blood sugar level is too high (> rU ) or too low (< rL). However, he/she may

become very hesitant to make the decision when the sugar level dwells in [rL, rU ], an interval

without any other explicit benchmarks or information. This chaotic interval [rL, rU ] is exactly a

typical buffer zone, where a retrospection of the historical data is needed to judge the status of

the variable of interest. Therefore, in this case, a wise doctor might read the patient’s previous

record of blood sugar level. If the blood sugar level swings around rU within the last week, the

patient will be hospitalized overnight. Otherwise, the doctor will only give a prescription and

require the patient to have at-home treatment.

Such regime switching mechanism was first formulated by Li, Guan, Li, and Yu (2015), in an

effort to extend the traditional threshold AR model. Only focusing on the conditional mean

function, Li, Guan, Li, and Yu (2015) has not considered conditional heteroscedasticity, which

is, however, an essential part in the models of financial time series. Therefore, Lo et al. (2016)

applied the similar idea to the conditional volatility process and proposed the buffered pure

GARCH process in the study of exchange rate. Zhu et al. (2017) then introduced the concept of

the buffered autoregressive model with generalized autoregressive conditional heteroscedasticity

(BAR-GARCH) and empirically compared its performance with AR-GARCH and Threshold-

GARCH model by an analysis of exchange rate. However, the theoretical property of BAR-

GARCH model remained unexplored, for which no statistical inference could be substantiated.

Besides, the volatility could not be explicitly computed by observations in a direct way in BAR-

GARCH model.

Statistical test for the existence of threshold and model selection criteria are also crucial in the

construction of buffered models. A quasi-likelihood ratio for the thresholds of BAR model has

been established by Zhu et al. (2014), yet similar tests for a more generalized model such as

BAR-GARCH model seems not readily available. Moreover, the application of model selection

criteria (AIC, AICC and BIC) to the order selection in BAR-GARCH model lacks necessary

simulation tests as well as theoretical support.

In this paper, we proposed a buffered double AR (BDAR) model that captures the stickiness
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through applying a novel regime switching mechanism established by Li, Guan, Li, and Yu (2015)

to double AR (DAR) model (see Ling (2004, 2007), Zhu and Ling (2013)). The theoretical prop-

erties of the proposed model are thoroughly investigated. Unlike the BAR-GARCH model, the

conditional variance of each regime in the BDAR model is governed directly by past observations

which allows a visible dynamic behavior of conditional volatility.

The remainder of the paper is organized as follows. Section 2 proposes the buffered double

autoregressive (BDAR) model. Formal proofs suggest strict stationarity and geometric ergodicity

of BDAR model under several sufficient conditions. A Gaussian quasi-maximum likelihood

estimation (QMLE) is employed to compute the estimators in this model. The strict proof

reveals the asymptotic normality of the estimated coefficients governing the conditional mean

and variance of each regime in the BDAR model. More importantly, it has been demonstrated

that each of the estimated thresholds of the BDAR model is n-consistent and weakly converges

to the smallest minimizer of a two-sided compound Poisson process. Our results include the

buffered AR (BAR) model (Li, Guan, Li, and Yu (2015)), threshold double AR (TDAR) model

(Li, Ling, and Zhang (2016)) and traditional threshold AR (TAR) model (Tong (1990)) as

special cases. A Bayesian-type information criteria (BIC), as well as its asymptotic property,

are formally derived in section 3 for selecting orders of DAR models embedded in the BDAR

model. Section 4 conducts several Monte Carlo simulation experiments to evaluate the finite

sample performance of the Gaussian QMLE and proposed BIC. Finally, the model is applied to

Hang Seng Index (HSI) in Section 5 to show the asymmetry of investors’ preference over losses

and gains as well as the leverage effect of the stock market. All technical proofs are relegated to

Appendix.

2 Buffered double autoregressive models

Consider the following buffered double autoregressive (BDAR) model:

yt =

 φ10 +
∑p
i=1 φ1iyt−i + εt

√
α10 +

∑p
j=1 α1jy2

t−j if Rt = 1

φ20 +
∑p
i=1 φ2iyt−i + εt

√
α20 +

∑p
j=1 α2jy2

t−j if Rt = 0
(2.1)

Rt =


1 if yt−d ≤ rL
0 if yt−d > rU

Rt−1 otherwise


Where αk0 > 0 with αkj ≥ 0 for k = 1, 2 and j = 1, . . . , p. And {εt} are identically and inde-

pendently distributed (i.i.d.) random variables with mean zero and variance one. The integer

d > 0 is the delay paramerter and rL ≤ rU are the boundary parameters of buffer zone. We
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denote the model by BDAR(p) for simplicity. Note (2.1) includes the BAR model proposed by

Li, Guan, Li, and Yu (2015) as a special case. When rL = rU , (2.1), the model becomes the

threshold double AR model proposed by Li et al. (2016).

Denote Yt = (yt, yt−1, . . . , yt−p+1, Rt)
′, mit = φ1iI(At) + φ2iI(Act), where At is the event

{yt−d ≤ rL}
⋃
{rL < yt−d ≤ rU , Rt−1 = 1} and Act is its complement. After introducing nota-

tions M0t, M1t, g1(Yt−1) and g2(Yt−1) as follows, we can show that Yt = g1(Yt−1) + εtg2(Yt−1)

forms a Markov Chain.

M0t =



φ10I(At) + φ20I(Act)

0
...

0

I(yt−d 6 rL)


M1t =



m1t m2t . . . mpt 0

1 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...

0 0 . . . . . . I(rL < yt−d 6 rU )



g1(Yt−1) = M0t +M1tYt−1

g2(Yt−1) =



√
(α10 +

∑p
j=1 α1jy2

t−j)I(At) + (α20 +
∑p
j=1 α2jy2

t−j)I(Act)

0
...

0



By applying a method similar to Lee (2006), several sufficient conditions are obtained for the

geometric ergodicity of {Yt}.

Theorem 1. Suppose the distribution of εt has a positive density f over R and E|εt|s <∞ for

some s > 0. Moreover, f is locally bounded away from 0 and satisfies supx∈R{(1+|x|)f(x)} <∞,

then the multivariate process {Yt} is geometrically ergodic and hence (2.1) admits a strictly

stationary, geometrically ergodic solution if one of the following conditions holds:

(i).
∑p
j=1

(
sup1≤i≤2 |φij |r + sup1≤i≤2(α

r/2
ij )E|εt|r

)
< 1, r ∈ (0, 1].

(ii).
(∑p

j=1 sup1≤i≤2 |φij |
)r

+
∑p
j=1 sup1≤i≤2(α

r/2
ij )E|εt|r < 1, r ∈ (1, 2] and f symmetric.

(iii).(1 + 3E(ε2t ))(
∑p
j=1 sup1≤i≤2 |φij |)4 + (E(ε4t ) + 3E(ε2t ))(

∑p
j=1 sup1≤i≤2 αij)

2 < 1, r = 4

Such conditions are easy to check but may be restrictive. Obtaining more general sufficient and

necessary stability conditions seems difficult and thus is left for future research.
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3 The QML estimator of BDAR(p) model

3.1 Estimation procedure

This section considers the Gaussian quasi-maximum likelihood estimation of the buffered double

AR model specified in (2.1).

Denote by θ = (λ′, rL, rU , d)′ the parameter vector of model (2.1), λ = (φ′1,α
′
1,φ
′
2,α
′
2) with

φ′i = (φi0, φi1, . . . , φip)
′ and α′i = (αi0, αi1, . . . , αip) and

ut(θ) = yt − µt(θ), µt(θ) = (φ′1Y1,t−1)Rt(rL, rU , d) + (φ′2Y2,t−1)(1−Rt(rL, rU , d))

ht(θ) = (α′1X1,t−1)Rt(rL, rU , d) + (α′2X2,t−1)(1−Rt(rL, rU , d))

(3.1)

with Y1,t−1 = Y2,t−1 = Yt−1 = (1, yt−1, . . . , yt−p)
′ and X1,t−1 = X2,t−1 = Xt−1 =

(1, y2
t−1, . . . , y

2
t−p)

′. The conditional log-likelihood function (after multiplying -2 and omitting

some constant) is defined as

Ln(θ) =

n∑
t=1

lt(θ), where lt(θ) = loght(θ) +
u2
t (θ)

ht(θ)

Let Λ be a compact set of R4p+4, [a b] be a predetermined interval, and dmax be a prede-

termined positive integer. Assume λ ∈ Λ,a ≤ rL ≤ rU ≤ b and d ∈ D = {1, . . . , dmax}.

The true parameter vector is θ0 = (λ0
′, r0L, r0U , d0)′ and the true regime indicator function is

Rt0 = Rt(r0L, r0U , d0)

Let n0=max{p, dmax}. For observed time series {yt,−n0 + 1 ≤ t ≤ n} generated by (2.1), the

likelihood functions defined in the above depend on past observations infinitely far away, due to

the novel regime switching mechanism. Hence, initial values are needed to fit the model.

As discussed in Li, Guan, Li, and Yu (2015), for fixed (rL, rU , d), the first few observations of

the threshold variable yt−d, say 1 ≤ t ≤ t0 may fall into the buffer zone (rL, rU ] such that the

regime which y1, . . . , yt0 belong to cannot be identified. Note these t0 observations come from

the same regime since the threshold variables keep staying in the buffer zone. We may simply

assign these t0 observations to lower regime and denote the resulting regime indicator function

by R̃t(rL, rU , d). Note the value of Rt0+1(rL, rU , d) is known since yt0+1−d is outside the buffer

zone and it is clear R̃t(rL, rU , d) = Rt(rL, rU , d) when t0 < t ≤ n.

Denote by l̃t(θ) and L̃n(θ) the corresponding functions withRt(rL, rU , d) replaced by R̃t(rL, rU , d).

We can then define the Gaussian QMLE of the true value θ0 ∈ Θ as θ̂n = arg minθ∈Θ L̃n(θ) .
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One can take two steps to search θ̂n:

• First minimize θ̂n for each fixed (rL, rU , d), i.e.

λ̂n(rL, rU , d) = arg min
λ∈Λ

L̃n(λ, rL, rU , d)

• Search for the estimators of (rL, rU , d) by

(r̂L, r̂U , d̂) = arg min
d∈D, a≤rL≤rU≤b

L̃n(λ̂n, (rL, rU , d), rL, rU , d)

Then we obtain θ̂n = (λ̂′n, r̂L, r̂U , d̂)′.

3.2 Asymptotic Results

Assumption 1 pr(yt ∈ [a b]) < 1, εt is i.i.d. with zero mean and unit variance, and has a

positive and continuous density f(x) on R.

Assumption 2 The parameter space

Λ =
{
λ ∈ R4p+4 : φ1 6= φ2 and α1 6= α2

}
is compact. Moreover, each element in α1 or α2 is

positive.

Theorem 2. Suppose Assumptions 1 and 2 hold and {yt} is strictly stationary and ergodic with

Ey2
t <∞. Then θ̂n → θ0 a.s. as n→∞.

The proof of Theorem 2 follows the standard arguments in proving strong consistency. The

delay parameter d only takes integer value. By theorem 2, when the sample size n is large, d̂

will be equal to d0. As in Li, Guan, Li, and Yu (2015), we assume the true delay parameter, d0,

is known for the remainder of this subsection, and then it is deleted from the parameter vector

θ and corresponding functions.

Assumption 3 κ4 ≡ E(ε4
t ) <∞ and E(y4

t ) <∞.

Assumption 4 The conditional mean function µt(θ) or volatility function ht(θ) in (3.1) are dis-

continuous over the buffer zone [r0L, r0U ], i.e. there exist p−1 constants zp−1,. . .,zp−d+1,zp−d−1,. . .,z0

such that

{(φ10 − φ20)′z}2 + {(α10 −α20)′Z}2 > 0

for all zp−d ∈ [r0L, r0U ] where z = (1, zp−1, . . . , z0)′ and Z = (1, z2
p−1, . . . , z

2
0)′. Without loss of

generality, here we assume that d ≤ p.
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Let Yt = (yt, . . . , yt−p+1, Rt)
′,then {Yt} is a Markov chain as shown in previous section. Denote

its m-step transition probability function by Pm(x,A), where x ∈ Rp×{0, 1}, A ∈ Bp×U , where

Bp is the class of Borel sets of Rp and U = {Ø, {0}, {1}, {0, 1}}

Assumption 5 The time series {Yt} admits a unique invariant measure π(·), such that there ex-

ist K > 0 and 0 ≤ ρ < 1 for any x ∈ Rp×{0, 1} and any m, ‖Pm(x, ·)−π(·)‖v ≤ K(1+‖x‖2)ρm,

where ‖ · ‖v and ‖ · ‖are respectively the total variation norm and Euclidean norm.

Under Assumption 5, {Yt} is said to be V-uniformly ergodic with V (x) = K(1 + ‖x‖2), a condi-

tion stronger than geometric ergodicity.

Theorem 3. Suppose Assumptions 1 to 5 hold and θ0 is an interior point of Θ. Then:

(i). n(r̂L − r0L) = Op(1) and n(r̂U − r0U ) = Op(1)

(ii).
√
n supn(|rU−r0U |+|rL−r0L|)≤B ‖λ̂n(rL, rU ) − λ̂n(r0L, r0U )‖ = op(1) for any fixed constant

0 < B < ∞, where λ̂n(rL, rU ) is the QMLE given rL, rU are known. Furthermore, it follows

that:
√
n(λ̂n − λ0) =

√
n(λ̂n(r0L, r0U )− λ0) + op(1)⇒ N(0,Ω−1ΣΩ−1), as n→∞.

Where Ω = diag(A1, 0.5B1, A2, 0.5B2),Σ = diag(Σ1,Σ2) with

Σi =

 Ai
κ3

2
Di

κ3

2
D′i

κ4−1
4
Bi

,
where κ3 = E(ε3

1)

Ai = E
{
Yi,t−1Y

′
i,t−1

α′i0Xi,t−1
gi(r0L, r0U )

}
Bi = E

{
Xi,t−1X

′
i,t−1

(α′i0Xi,t−1)2
gi(r0L, r0U )

}
Di = E

{
Yi,t−1X

′
i,t−1

(α′i0Xi,t−1)3/2
gi(r0L, r0U )

}

with g1(r0L, r0U ) = Rt(r0L, r0U ) and g2(r0L, r0U ) = 1−Rt(r0L, r0U )

To study the limiting distribution of r̂L and r̂U , denote the ξ1t =
∞∑
j=0

ζ1,t+jHt+j,j and ξ2t =

∞∑
j=0

ζ2,t+jHt+j,j , where

ζ1t = log
α′10Xt−1

α′20Xt−1
+
{(φ10 − φ20)′Yt−1 − εt

√
α′20Xt−1}2

α′10Xt−1
− ε2t

ζ2t = log
α′20Xt−1

α′10Xt−1
+
{(φ10 − φ20)′Yt−1 + εt

√
α′10Xt−1}2

α′20Xt−1
− ε2t

Ht,j =
j∏
l=1

1(r0L < yt−d+1−l 6 r0U ) with convention
0∏
l=1

= 1
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Similar to Li, Guan, Li, and Yu (2015), for i = 1, 2, denote Fi,L(·|r) and Fi,U (·|r) be the

conditional distribution functions of ξit{1−Rt−1(r0)} and ξitRt−1(r0) given yt−d = r respectively,

where r0 = (r0L, r0U )′. Denote π(·) the density function of yt. Then define two independent

one-dimensional two-sided compound Poisson process:

ϕL(t) = 1(t > 0)
N

(L)
1 (|t|)∑
k=1

χ
(1,L)
k + 1(t < 0)

N
(L)
2 (|t|)∑
k=1

χ
(2,L)
k

ϕU (t) = 1(t > 0)
N

(U)
1 (|t|)∑
k=1

χ
(1,U)
k + 1(t < 0)

N
(U)
2 (|t|)∑
k=1

χ
(2,U)
k

where χ
(i,L)
k and χ

(i,U)
k have conditional distribution functions Fi,L(·|r0L) and Fi,U (·|r0U ) respec-

tively, i = 1, 2. {N (L)
1 (t), t > 0}, {N (L)

2 (t), t > 0}, {N (U)
1 (t), t > 0}, {N (U)

2 (t), t > 0} are four inde-

pendent Poisson Processes with N
(L)
1 (0) = N

(L)
2 (0) = N

(U)
1 (0) = N

(U)
2 (0) = 0. N

(L)
1 (·), N (L)

2 (·)

have jump rate π(r0L), while N
(U)
1 (·), N (U)

2 (·) have jump rate π(r0U ). Moreover, N
(L)
1 (·) and

N
(U)
1 (·) are right continuous. N

(L)
2 (·) and N

(U)
2 (·) are left continuous.

It is implied by Assumption 4 that E[χ
(1,j)
k ] and E[χ

(2,j)
k ] > 0 for j = L and U . Then ϕj(t)→∞

a.s. as |t| → ∞. Then define ϕ(z) = ϕL(zL) + ϕU (zU ), where z = (zL, zU ) ∈ R2. As in

Li, Guan, Li, and Yu (2015) and Li, Ling, and Zakoian (2015), there exists a unique ran-

dom square [M
(L)
− ,M

(L)
+ ) × [M

(U)
− ,M

(U)
+ ) on which ϕ(z) attains the global minimum, where

[M
(j)
− ,M

(j)
+ ) = argmint∈R ϕj(t).

The following theorem states that n(r̂L− r0L) and n(r̂U − r0U ) converges weakly to a functional

of the compound Poisson Process ϕ(z).

Theorem 4. If Assumption 1 to 5 hold, then n(r̂L − r0L) → M
(L)
− and n(r̂U − r0U ) → M

(U)
− .

Furthermore, n(r̂L − r0L), n(r̂U − r0U ) and
√
n(λ̂n − λ0) are asymptotically independent.

3.3 Model Selection

We consider the Bayesian Information Criteria (BIC) for model selection, since BIC outperforms

AIC for buffered type models, see Li, Guan, Li, and Yu (2015).

Write for simplicity R̃t as the QMLE estimator of R̃t(r̂L, r̂U , d̂). n1 =
n∑
t=1

R̃t and n2 = n − n1

Then define

BIC(p) =

n∑
t=1

lt(θ̂) + (2p+ 2) log n1 + (2p+ 2) log n2

8



where lt(θ) is defined in Section 3.1. Let p0 be the true order of the model and pmax be a

predetermined large order. p̂n = argmin0≤p≤pmax
BIC(p) Then,

Theorem 5. If Assumption 1 to 5 hold, then Pr(p̂n = p0)→ 1 as n→∞.

4 Simulation studies

We first examine the finite sample performance of QMLE. We use sample size n = 400, 800, each

with replications 500 for the following model

yt =

 −0.1 + 0.2yt−1 + 0.1yt−2 + εt

√
0.1 + 0.3y2

t−1 + 0.05y2
t−2 Rt = 1

0.1− 0.2yt−1 + 0.3yt−2 + εt

√
0.05 + 0.2y2

t−1 + 0.1y2
t−2 Rt = 0

(4.1)

with the regime indicator

Rt =


1 if yt−4 ≤ −0.1

0 if yt−4 > 0.15

Rt−1 otherwise


where {εt} are independently and identically distributed with standard normality. The estima-

tion procedure discussed in Section 3.1 is employed. The range of the boundary parameters rL

and rU is set from 10th percentile to 90th percentile of each sample. And the maximum delay

parameter dmax is set to be 6. For each sample size n = 400, 800, d can be correctly identified

for all 500 replications respectively. The bias, the empirical standard deviation (ESD) and the

asymptotic standard deviation (ASD) are listed in Table 1. We can observe the bias and the

empirical standard deviation decrease as the sample size increases and all the ESDs are close

to corresponding ASDs, which are consistent with the asymptotic results in Theorem 2 and

Theorem 3. Note the ASD of boundary parameters rL and rU cannot be estimated and only

the ESD are included in Table 1. We observe the ESD of rL and rU are approximately reduced

by one half when the sample size doubles, which is evidence supporting the super-consistency

of boundary parameters. For each sample size, the histograms of n(r̂L − r0L) and n(r̂U − r0U )

are displayed in Figure 1, whose shapes are close to the ones reported in Li et al. (2013) and Li,

Guan, Li, and Yu (2015)

We now evaluate the finite sample performance of model selection criteria (BIC) in Section

3.3. The data generating process is the same as (4.1). The sample size is 800, and there are

150 replications. The maximum order pmax for each regime’s conditional mean and conditional

variance is set to be 6. And the maximum delay parameter dmax is still set to be 6. As a result,

the BIC correctly identifies all true orders at a rate of 100%.
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5 Empirical Analysis

This section considers the weekly closing prices of Hang Seng Index over the period January

2000 to December 2007. We focus on the log return in percentage yt = 100(logPt − logPt−1),

where Pt is the weekly closing price at time t. There are 417 observations of {yt} in total. The

plot of {Pt} and {yt} are displayed in Figure 2. Li et al. (2016) have studied this series and they

conclude the existence of nonlinearity, ARCH effect and threshold effect through Tsay’s test

(Tsay (1986)), Mcleod-Li’s test (Mcleod and Li (1983)) and their score-based test respectively.

The two-regime threshold double autoregressive model (TDAR) is employed to fit the data in

Li et al. (2016). Since TDAR model can be considered as a special case of BDAR model, it

motivates us to consider the proposed BDAR model to fit the percentage log return series.

The range of boundary parameters rL and rU is from the 10th to the 90th empirical percentiles

of observations. The maximum delay parameter dmax is set to be 6 and the maximum order

pmax for each regime’s conditional mean and conditional variance is set to be 5. Based on BIC,

we have the following fitted model:

yt =

 0.39370.2621 + 0.03850.1318yt−1 + 0.20930.0894yt−2 + εtσt Rt = 1

−0.59920.2665 + 0.23540.0970yt−1 + εtσt Rt = 0
(5.1)

where

σ2
t =

 5.39910.9225 + 0.54320.1583y
2
t−1 + 0.17870.1161y

2
t−2 Rt = 1

3.44730.7086 + 0.02630.0599y
2
t−1 + 0.06780.0578y

2
t−2 + 0.14160.0631y

2
t−3 Rt = 0

with the regime indicator

Rt =


1 if yt−1 ≤ −0.2048

0 if yt−1 > 0.8770

Rt−1 otherwise

where the subscripts of parameter estimates are their associated standard errors. Figure 3 dis-

plays respectively ACFs of residuals and squared residuals, and they slightly go beyond the 95%

confidence bands only at a few lags, which partially suggests the adequacy of the fitted model.

To further investigate the fit-adequacy, the Ljung-Box test statistic Qm and the McLeod-Li test

statistic Q̃m are employed. Generally, m takes value 6 and 12, see Tse (2002) for a discussion on

the choice of m. The p-values for of Q6, Q12, Q̃6 and Q̃12 are 0.6590, 0.3666, 0.8200 and 0.4013

respectively, which further suggests the fit-adequacy at 5% significance level.

The asymmetry of the buffered zone around 0 might be interpreted as market participants are

more sensitive to losses and gains. Based on the fitted model, the investors require the return of
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previous week to go above 0.8770% to confirm a good time, approximately three times larger in

absolute value than the signal of a bad time. When the previous week’s return lies in the buffer

zone [-0.2048% 0.8770%], investors are not sure about the market condition, so they trace back

to learn Rt−1, which may depend on returns several periods ago. Therefore, the buffered double

autoregressive model will further rely on the information contained in the dynamic momentum

structure, when the past week’s return alone is not quite informative on the market conditions.

The BDAR model provides a more realistic characterization on the regime switching mechanism

than the traditional two-regime threshold type model. The sudden switch of the probabilistic

structure as in the traditional threshold time series models can be delayed by the incorporation

of the buffer zone.

Another feature of the fitted BDAR model is the asymmetry of volatility. The coefficients in the

lower regime’s conditional variance is much larger than their counterparts in the upper regime.

This asymmetry can be interpenetrated as the stock market is more volatile during bad times.

11



6 Appendix

6.1 Proof of Theorem 1

As in the main part of the paper, define

Yt =



yt

yt−1

...

yt−p+1

Rt



M0t =



φ10I(At) + φ20I(Act)

0
...

0

I(yt−d 6 rL)


M1t =



m1t m2t . . . mpt 0

1 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...

0 0 . . . . . . I(rL < yt−d 6 rU )



g1(Yt−1) = M0t +M1tYt−1

g2(Yt−1) =



√
(α10 +

∑p
j=1 α1jy2

t−j)I(At) + (α20 +
∑p
j=1 α2jy2

t−j)I(Act)

0
...

0



Yt = g1(Yt−1) + εtg2(Yt−1) forms a Markov Chain

Let Bp be the class of Borel sets of Rp, µp+1 be the Lebesgue measure on Rp+1 and

U = {∅, {0}, {1}, {0, 1}}

We denote its state space by (Rp × {0, 1},Bp × U , µp+1) and sets its transition probability

function as:

P (x,A) =
∫
A1
fε(y)dy, x ∈ Rp × {0, 1} and A ∈ Bp × U

12



Where A1 = {ε : εg2(x) + g1(x) ∈ A} and fε(·) is the density of εt.

By a method similar to Lemma 1 and 2 of Lu (1998), it can be shown that the chain is

µp+1-irreducible and aperiodic, and non-null compact sets are small sets.

Before we proceed, we need to state one lemma and one theorem. The lemma is proved in

Lee (2006) and the theorem comes from Tweedie (1983):

Lemma 6.1. (Lemma 2.2 in Lee (2006)) Let V (z) =
∑n
i=1 γi|zi|r, z = (z1, z2, . . . , zn), n ∈

Z+, r > 0. If
∑n
i=1 ξi < 1 with ξi > 0, we may choose γi > 0, i = 1, . . . , n so that for some

positive constant ρ < 1, γ1(
∑n
i=1 ξi|zi|r) +

∑n
i=2 γi|zi−1|r 6 ρV (z).

Theorem 6.2. (Theorem 4 in Tweedie (1983)) Suppose that the Markov process {Yt : t > 0}

is aperiodic µ-irreducible and B is a small set. Suppose there are constants ρ < 1, ε > 0 and a

measurable function V > 1 such that

E[V (Yt)|Yt−1 = z] 6 ρV (z)− ε, z ∈ Bc

supz∈B E[V (Yt)|Yt−1 = z] <∞

then the Markov process Yt is geometrically ergodic.

We continue the proof. Let bj = max
16i62

|φij |, 0 6 j 6 p, aj = max
16i62

αij , 0 6 j 6 p. Define a test

function V by:

V (Yt) =
p∑
i=1

γi|yt+1−i|r + 1

|yt| 6 b0 +
p∑
j=1

bj |yt−j |+ |εt|(a0 +
p∑
j=1

ajy
2
t−j)

1
2

Define:

s1(yt−1, . . . , yt−p) = b0 +

p∑
j=1

|yt−j |bj

s2(yt−1, . . . , yt−p) = [a0 +

p∑
j=1

y2
t−jaj ]

1
2

13



Similar to Lee (2006), we have:

sr1 6


br0 +

p∑
j=1

brj |yt−j |r, 0 < r 6 1

(1 + ε)r(

p∑
j=1

bj)
r−1(

p∑
j=1

bj |yt−j |r), 1 < r 6 2,∀ε > 0,∃M(ε)s.t.||Yt−1|| > M(ε)

sr2 6 a
r
2
o +

p∑
j=1

a
r
2
j |yt−j |

r, 0 < r 6 2

Moreover, when 0 < r 6 1, by basic inequality, we have E[|yt|r|Yt−1] 6 sr1 + sr2E|εt|r

When 1 < r 6 2, note εt is symmetric by assumption, by the following inequality:

(1 + x)r + (1− x)r 6 2(|x|r + 1),−1 ≤ x ≤ 1

we can show that

E[|s1 + s2εt|r|Yt−1] =
1

2
E[|s1 + s2εt|r + |s1 − s2εt|r|Yt−1] 6 sr1 + sr2E|εt|r

Therefore, E[V (Yt)|Yt−1]

6 γ1(sr1 + sr2E|εt|r) +

p∑
i=2

γi|yt+1−i|r + 1

6 γ1

p∑
i=1

ξi|yt−i|r +

p∑
i=2

γi|yt+1−i|r + 1 + C1,

where Cj is a generic notation for positive constants

p∑
i=1

ξi =



p∑
j=1

brj +

p∑
j=1

a
r
2
j E|εt|

r, 0 < r 6 1

(1 + ε)r(

p∑
j=1

bj)
r +

p∑
j=1

a
r
2
j E|εt|

r, 1 < r 6 2,∀ε > 0,∃M(ε), s.t.||Yt−1|| > M(ε)

By Lemma 6.1, we can set
p∑
i=1

ξi < 1 and find γi > 0, i = 1, . . . , p such that for ||z|| > M, ∃ some

constants ρ < 1, E[V (Yt)|Yt−1 = z] 6 ρV (z) + C2. Thus, inequalities in Theorem 6.2 hold with

some ε > 0 and compact set B = {||z|| 6M} for sufficiently large M <∞, since V (z) increases

as ||z|| increases. Hence, we obtain the geometric ergodicity and hence the strict stationarity.
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To prove the third part of the theorem, define V (z) =
p∑
i=1

γiz
4
i + 1 from E(εt) = E(ε3t ) = 0 for

||z|| > M .

E[(s1 + s2εt)
4|Yt−1] 6 [(1 + 3E(ε2t ))s

4
1 + (Eε4t + 3Eε2t )s

4
2]

s4
1 6 (1 + ε)4(

p∑
j=1

bjy
4
t−j)(

p∑
j=1

bj)
3

s4
2 6 (1 + ε)2(

p∑
j=1

ajy
4
t−j)(

p∑
j=1

aj)

Therefore for ||z|| > M

E[V (Yt)|Yt−1 = z] 6 γ1{[1 + 3E(ε2t )]s
4
1 + [E(ε4t ) + 3E(ε2t )]s

4
2}+

p∑
i=2

γi|yt+1−i|4 + 1

6 γ1

p∑
i=1

ξi|yt−i|4 +

p∑
i=2

γi|yt+1−i|4 + 1

where
p∑
i=1

ξi = [1 + 3E(ε2t )](1 + ε)4(
p∑
j=1

bj)
4 + [E(ε4t ) + 3E(ε2t )](1 + ε)2(

p∑
j=1

aj)
2

By Lemma 6.1, we can set
p∑
i=1

ξi < 1 and obtain the geometric ergodicity as we do in proving

the first two parts of the theorem.

6.2 Proof of Theorem 2

Before we prove Theorem 2, we introduce some notations and a preliminary result.

Denote the parameter space as Θ = ∧ × [a, b]× [a, b]×D, where ∧ = ∧1 × ∧2.

Parametre vector θ = (φ′1, α
′
1, φ
′
2, α
′
2, rL, rU , d)′ = (λ′1, λ

′
2, rL, rU , d)′, where

λ1 =

φ1

α1

 λ2 =

φ2

α2


Recall in the main body of the paper, we define

lt(θ) = loght(θ) +
u2
t (θ)

ht(θ)

= Rt{logh1t(θ) +
[yt − µ1t(θ)]

2

h1t(θ)
}+ (1−Rt){logh2t(θ) +

[yt − µ2t(θ)]
2

h2t(θ)
}

where for i=1,2

µit(θ) = φi0 + φi1yt−1 + · · ·+ φipyt−p

hit(θ) = αi0 + αi1y
2
t−1 + · · ·+ αipy

2
t−p

We further denote it as lt(θ) = Rtl1t(θ) + (1−Rt)l2t(θ), with
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l1t(θ) = logh1t(θ) +
[yt − µ1t(θ)]

2

h1t(θ)

l2t(θ) = logh2t(θ) +
[yt − µ2t(θ)]

2

h2t(θ)

If Assumption 2 and conditions in Theorem 2 hold, Lemma B.2 in Ling (2007) implies that

E[sup
θ∈Θ
|lit(θ)|] <∞ i=1,2 and E[sup

θ∈Θ
|lt(θ)|] <∞ (6.3)

This preliminary result will be used to invoke dominance convergence theorem in the following.

We are ready to prove Theorem 2 now.

Proof of Theorem 2

Following the method in Huber(1967), it is sufficient for us to verify the following three claims:

• S1: sup
θ∈Θ

1
n |L̃n(θ)− Ln(θ)| a.s.−−→ 0, where L̃n(θ) is the modified likelihood function de-

fined in the paper.

• S2: E[lt(θ)] is uniquely minimized at θ = θ0 = (φ′10, α
′
10, φ

′
20, α

′
20, r0L, r0U , d0)′

• S3: E[ sup
θ∗∈Uη(θ)

|lt(θ)− lt(θ∗)|]
a.s.−−→ 0 as η → 0, where Uη(θ) = {θ∗ ∈ Θ, ||θ∗ − θ|| < η}

Let us first show S1:

1

n
|L̃n(θ)− Ln(θ)| = 1

n
|
kn∑
t=1

(l̃t(θ)− lt(θ))|

= {(1−R1)

kn∏
t=1

1(rL < yt−d 6 rU )}{ 1

n

kn∑
t=1

[l1t(θ)− l2t(θ)]}

6
kn∏
t=1

1(a 6 yt−d 6 b){ 1

n

kn∑
t=1

[l1t(θ)− l2t(θ)]}

If kn
n → 0, then clearly sup

θ ∈ Θ

1
n |L̃n(θ)− Ln(θ)| → 0

If kn
n → a positive number (constant), then by ergodic theorem, Assumption 1 in the paper and

(6.3), we have:
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sup
θ∈Θ

1
kn

kn∑
t=1

[l1t(θ) − l2t(θ)]
a.s.−−→ E[sup

θ∈Θ
[l1t(θ) − l2t(θ)] 6 E[sup

θ∈Θ
[l1t(θ)] + E[sup

θ∈Θ
l2t(θ)] <∞

Moreover, by Assumption 1,

1
kn

kn∑
t=1

1(yt−d < a or yt−d > b)→ Pr(yt−d < a or yt−d > b) > 0

Pr( lim
kn→∞

kn∏
t=1

1(a 6 yt−d 6 b) = 1) = Pr( lim
kn→∞

1
kn

kn∑
t=1

1(yt−d < a or yt−d > b) = 0) = 0

i.e., lim
kn→∞

kn∏
t=1

1(a 6 yt−d 6 b)→ 0 as kn →∞.

Therefore, we still have sup
θ ∈ Θ

1
n |L̃n(θ)− Ln(θ)| → 0. We finish the proof of S1.

Let us then show S2:

Eθ0{lt(θ)} − Eθ0{lt(θ0)}

= Eθ0{[l1t(θ)− l1t(θ0)]R0tRt}+ Eθ0{[l2t(θ)− l2t(θ0)](1−R0t)(1−Rt)}

+ Eθ0{[l1t(θ)− l2t(θ0)](1−R0t)Rt}+ Eθ0{[l2t(θ)− l1t(θ0)]R0t(1−Rt)}

Consider Eθ0 [(l1t(θ)− l2t(θ0))R0tRt]

= Eθ0{(log
α′1Xt−1

α′10Xt−1
+
α′10Xt−1

α′1Xt−1
− 1 +

[(φ10 − φ1)′Yt−1]2

α′1Xt−1
)R0tRt}

By log 1
x + x− 1 > 0, we know:

Eθ0{[l1t(θ)− l2t(θ)]R0tRt} > 0 with equality iff
α′1Xt−1

α′10Xt−1
= 1 and

(φ10 − φ1)′Yt−1 = 0, i.e.,α1 = α10,φ1 = φ10

Similarly, we have:

Eθ0{[l2t(θ)− l2t(θ0)](1−R0t)(1−Rt)} > 0 with equality iff
α′2Xt−1

α′20Xt−1
= 1 and

(φ20 − φ2)′Yt−1 = 0, i.e.,α2 = α20,φ2 = φ20

For the third term, we have Eθ0{[l1t(θ)− l2t(θ0)](1−R0t)Rt} ≥ 0. Since we assume φ10 6= φ20

and α10 6= α20, Eθ0{[l1t(θ)− l2t(θ0)](1 − R0t)Rt} = 0 implies Eθ0{(1 − R0t)Rt} = 0, from

which it can be deduced, following the same argument in proving Theorem 2 in Li, Guan, Li, and

Yu (2015), that d = d0, rL > r0L, rU > r0U . Similarly, from the last term Eθ0{[l2t(θ)− l1t(θ0)]R0t(1−

Rt)} = 0, we have d = d0, rL 6 r0L, rU 6 r0U . We thus finish the proof of S2.

Let us further show S3:
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θ∗ ∈ Uη(θ)

lt(θ
∗)− lt(θ) = {l1t(θ∗)− l1t(θ)}Rt(r∗L, r∗U , d)

+ l1t(θ)[Rt(r
∗
L, r
∗
U , d)−Rt(rL, rU , d)]

+ [l2t(θ
∗)− l2t(θ)][1−Rt(r∗L, r∗U , d)]

+ l2t(θ)[Rt(rL, rU , d)−Rt(r∗L, r∗U , d)]

(6.4)

l1t(θ
∗)− l1t(θ) = logα∗1

′Xt−1 − logα′1Xt−1

+
(yt − φ∗1

′Yt−1)2 − (yt − φ′1Yt−1)2

α∗1
′Xt−1

+ (yt − φ′1Yt−1)2[
1

α∗1
′Xt−1

− 1

α′1Xt−1
]

By Taylor’s expansion and a method similar to Zhu and Ling (2013), we have:

E[ sup
θ∗∈Uη(θ)

| logα∗1
′Xt−1 − logα1

′Xt−1|]→ 0 as η → 0

E[ sup
θ∗∈Uη(θ)

|
(yt − φ∗1

′Yt−1)2 − (yt − φ1
′Yt−1)2

α∗1
′Xt−1

|]→ 0 as η → 0

E[ sup
θ∗∈Uη(θ)

|(yt − φ′1Yt−1)2(
1

α∗1
′Xt−1

− 1

α′1Xt−1
)|]→ 0 as η → 0

Therefore, the first and third terms in expression (6.4) can be dealt with.

We now look at the second term in (6.4).

Since l1t(θ) and Rt(r
∗
L, r
∗
U , d)−Rt(rL, rU , d) have non-overlapping parameters,

E{ sup
θ∗∈Uη(θ)

l1t(θ)[Rt(r
∗
L, r
∗
U , d)−Rt(rL, rU , d)]} = E{ sup

θ∗∈Uη(θ)

l1t(θ) sup
θ∗∈Uη(θ)

[Rt(r
∗
L, r
∗
U , d)−Rt(rL, rU , d)]}

Li, Guan, Li, and Yu (2015) shows that E{ sup
θ∗∈Uη(θ)

|Rt(r∗L, r∗U , d)−Rt(rL, rU , d)|} → 0 as η →

0. Combining this with E[ sup
θ∗∈Uη(θ)

|l1t(θ)|] < ∞ and using dominated convergence theorem, we

have:

E{ sup
θ∗∈Uη(θ)

l1t(θ)[Rt(r
∗
t , r
∗
U , d)−Rt(rt, rU , d)]} → 0 as η → 0
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The fourth term in (6.4) can be dealt with in the same way. We thus finish the proof of S3.

Based on S1-S3 and Huber (1967), Theorem 2 is proved.

6.3 Proof of Theorem 3

We first prove the super-consistency of the estimated boundary parameters at Claim (i). Note

in Theorem 2, we know θ̂n is strong consistent. Therefore, without loss of generality, we restrict

the parameter space to a neighborhood of θ0.

Define w(4) = {λ ∈ ∧, a < rL < rU < b : ||λ− λ0|| < 4, |rL − r0L| < 4, |rU − r0U | < 4},

where 0 < 4 < min{1, r0U−r0L2 } will be determined later. As in Chan (1993), it is sufficient to

show for any ε > 0,∃ a positive K such that:

Pr(L̃n(λ, r0L + zL, r0U + zU )− L̃n(λ, r0L, r0U ) > 0) > 1− ε (6.5)

where λ ∈ w(4), |zL| > K
n , |zU | >

K
n .

We consider the case p = d = 1,zL < 0 and zU > 0. Denote the disjoint events:

A0 = {r0U < yt−1 6 r0U + zU , Rt−1 = 1}

B0 = {r0L + zL < yt−1 6 r0L, Rt−1 = 0}

Ai = {yt−1 ∈ (r0L, r0U ], . . . , yt−i ∈ (r0L, r0U ], r0U < yt−i−1 6 r0U + zU , Rt−i−1 = 1}, i > 1

Bi = {yt−1 ∈ (r0L, r0U ], . . . , yt−i ∈ (r0L, r0U ], r0L + zL < yt−i−1 6 r0L, Rt−i−1 = 0}, i > 1

where Rt ≡ Rt(r0L + zL, r0U + zU ). Denote At(zL, zU ) =
∞⋃
j=0

Aj , Bt(zL, zU ) =
∞⋃
j=0

Bj

As in Li, Guan, Li, and Yu (2015), we have:

Rt(r0L + zL, r0U + zU )−Rt(r0L, r0U ) = 1{At(zL, zU )} − 1{Bt(zL, zU )}

Moreover, Bt(zL, zU ) ⊂ {Rt(r0L, r0U ) = 1}, At(zL, zU ) ⊂ {Rt(r0L, r0U ) = 0}. As a result,

Ln(λ, r0L + zL, r0U + zU )−Ln(λ, r0L, r0U )

=

n∑
t=1

(l1t(θ)− l2t(θ))[1{At(zL, zU )} − 1{Bt(zL, zU )}]

=

n∑
t=1

(l1t(θ)− l2t(θ))1{At(zL, zU )}+

n∑
t=1

(l2t(θ)− l1t(θ))1{Bt(zL, zU )}

= L1n(zL, zU ) +L2n(zL, zU )
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Our next step is to show that

Pr(L1n(zL, zU ) > 0) > 1− ε (6.6)

when λ ∈ w(4),−4 < zL < 0, Kn < zU < 4.

Define QzL(zU ) = E[1{At(zL, zU )}]

Qn,zL(zU ) =
1

n

n∑
t=1

1{At(zL, zU )}

By a calculation, we can obtain

L1n(zL, zU )

nQzL(zU )
≡

n∑
t=1

[l1t(θ)− l2t(θ)][1{At(zL, zU )}]

nQzL(zU )

=

n∑
t=1

[log
α′10Xt−1

α′20Xt−1
+
α′20Xt−1

α′10Xt−1
− 1 +

{(φ20 − φ10)′Yt−1}2

α′10Xt−1
]1{At(zL, zU )}

nQn,zL(zU )

+

n∑
t=1

2(φ20 − φ10)′Yt−1

√
α′20Xt−1

α′10Xt−1
εt1{At(zL, zU )}

nQn,zL(zU )

+

n∑
t=1

(α20 − α10)′Xt−1

α′10Xt−1
(ε2t − 1)1{At(zL, zU )}

nQn,zL(zU )
+Op(4)

Note in the first term,

log
α′10Xt−1

α′20Xt−1
+
α′20Xt−1

α′10Xt−1
− 1 +

{(φ20 − φ10)′Yt−1}2

α′10Xt−1
> 0

where Xt−1 = (1, y2
t−1),Yt−1 = (1, yt−1)

In the second term,
n∑
t=1

2(φ20 − φ10)′Yt−1

√
α′20Xt−1

α′10Xt−1
εt1{At(zL, zU )} is bounded in abso-

lute value by K1|
n∑
t=1

εt1(At(zL, zU ))|

For the third term, the numerator is bounded in absolute value byK2|
n∑
t=1

(ε2t−1)1(At(zL, zU ))|,

where K1 and K2 are some constants independent of n.

Following the methond similar to Theorem 3 in Li, Guan, Li, and Yu (2015), we can verify

the following three conditions: ∀ε > 0, η > 0,∃ a positive constant K such that as n is large
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enough,

Pr[ sup
k
n<zU<4,−4<zL60

| 1
nQzL(zU )

n∑
t=1

1{At(zL, zU )} − 1| < η] > 1− ε

Pr[ sup
k
n<zU<4,−4<zL60

| 1
nQzL(zU )

n∑
t=1

εt1{At(zL, zU )}| < η] > 1− ε

Pr[ sup
k
n<zU<4,−4<zL60

| 1
nQzL(zU )

n∑
t=1

(ε2t − 1)1{At(zL, zU )}| < η] > 1− ε

Therefore, (6.6) is implied. We can further show a similar result for L2n(zL, zU ), and then

that for Ln(λ, r0L + zL, r0U + zU ) − Ln(λ, r0L, r0U ). (6.5) is thus proved for the case that

p = d = 1, zL < 0 and zU > 0.

The proof for other cases is similar and hence is omitted. The proof of Claim (ii) in this

theorem is similar to that of Theorem 2.2 in Li, Ling, and Li (2013) and that of Theorem 3.2 in

Li, Ling, and Zakoian (2015), and is also omitted.

6.4 Proof of Theorem 4

From Theorem 3, we know n(r̂L−r0L) = Op(1) and n(r̂U−r0U ) = Op(1). To further characterize

their limiting distributions, we consider the limiting behavior of a sequence of normalized profile

objective function defined by:

L̃n(z) = Ln(λ̃n(r0 + z
n ), r0 + z

n )−Ln(λ̃n(r0), r0)

where r0 = (r0L, r0U )T and z = (zL, zU )T
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Denote ϕn(z) =
∑
t=1

ξ1t{1−Rt−1(r0)}1{r0L < yt−d 6 r0L +
zL
n
}1(zL > 0)

+
∑
t=1

ξ2t{1−Rt−1(r0)}1{r0L +
zL
n
< yt−d 6 r0L}1(zL < 0)

+
∑
t=1

ξ1tRt−1(r0)1{r0U < yt−d 6 r0U +
zL
n
}1(zU > 0)

+
∑
t=1

ξ2tRt−1(r0)1{r0U +
zU
n
< yt−d 6 r0U}1(zU < 0)

where ξ1t =

∞∑
j=0

ζ1,t+jHt+j,j

ξ2t =

∞∑
j=0

ζ2,t+jHt+j,j

ζ1t = log
α′10Xt−1

α′20Xt−1
+
{(φ10 − φ20)′Yt−1 − εt

√
α′20Xt−1}2

α′10Xt−1
− ε2t

ζ2t = log
α′20Xt−1

α′10Xt−1
+
{(φ10 − φ20)′Yt−1 + εt

√
α′10Xt−1}2

α′20Xt−1
− ε2t

Ht,j =

j∏
l=1

1(r0L < yt−d+1−l 6 r0U )

We first prove that, for any B > 0,

sup
||z||6B

|L̃n(z)− ϕn(z)| = op(1) (6.7)

It is sufficient to verify the following two conditions:

sup
||z||6B

|L̃n(z)− {Ln(λ0, r0 +
z

n
)−Ln(λ0, r0)}| = op(1) (6.8)

sup
||z||6B

|ϕn(z)− {Ln(θ0, r0 +
z

n
)−Ln(θ0, r0)}| = op(1) (6.9)

By a method similar to similar to the proof of Theorem 4 in Li, Guan, Li, and Yu (2015), we

can use Taylor’s expansion and results of Theorem 3 in current paper to show that (6.8) holds.

Below we will verify (6.9).

Denote Rt(z) = Rt(r0 + z
n ) for simplicity. As in Li, Guan, Li, and Yu (2015), we have:
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Rt(z)−Rt(0) = {Rt−1(z)−Rt−1(0)}1(r0L < yt−d 6 r0U )

+ {1−Rt−1(z)}1(r0L < yt−d 6 r0L +
zL
n

)1(zL > 0)

− {1−Rt−1(z)}1(r0L +
zL
n
< yt−d 6 r0L)1(zL < 0)

+Rt−1(z)1(r0U < yt−d 6 r0U +
zU
n

)1(zU > 0)

−Rt−1(z)1(r0U +
zU
n
< yt−d 6 r0U )1(zU < 0)

and then Rt(z)−Rt(0) =

∞∑
j=0

Ht,j{1−Rt−1−j(z)}1(r0L < yt−d−j 6 r0L +
zL
n

)1(zL > 0)

−
∞∑
j=0

Ht,j{1−Rt−1−j(z)}1(r0L +
zL
n
< yt−d−j 6 r0L)1(zL < 0)

+

∞∑
j=0

Ht,jRt−1−j(z)1(r0U < yt−d−j 6 r0U +
zU
n

)1(zU > 0)

−
∞∑
j=0

Ht,jRt−1−j(z)1(r0U +
zU
n
< yt−d−j 6 r0U )1(zU < 0)

(6.10)

where Ht,j =
j∏
l=1

1(r0L < yt−d+1−l 6 r0U )

Denote ζt = l1t(θ0)− l2t(θ0)

= logα′10Xt−1 +
(yt − φ′10Yt−1)2

α′10Xt−1
− logα′20Xt−1 −

(yt − φ′20Yt−1)2

α′20Xt−1

and it holds that Ln(λ0, r0 + z
n )−Ln(λ0, r0) =

n∑
t=1

ζt{Rt(z)−Rt(0)}.

For the first term of (6.10), i.e., the case with zL > 0, by a method similar to Li, Guan, Li,

and Yu (2015), it can be shown that:

sup
||z||6B

||
n∑
t=1

ζt
∞∑
j=0

Ht,j{Rt−1−j(z)−Rt−1−j(0)}1(r0L < yt−d−j 6 r0L + zL
n )|| = op(1)

Note ζt = ζ1t when Rt(0) = 0 and ζt = −ζ2t when Rt(0) = 1. Thus, we have
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n∑
t=1

ζt

∞∑
j=0

Ht,j{1−Rt−1−j(0)}1(r0L < yt−d−j 6 r0L +
zL
n

)

=

∞∑
j=0

n−j∑
t=1−j

ζt+jHt+j,j{1−Rt−1(0)}1(r0L < yt−d 6 r0L +
zL
n

)

=

∞∑
j=0

(

n∑
t=1

+

0∑
t=1−j

−
n∑

t=n−j+1

)ζt+jHt+j,j{1−Rt−1(0)}1(r0L < yt−d 6 r0L +
zL
n

)

=

∞∑
j=0

n∑
t=1−j

ζt+jHt+j,j{1−Rt−1(0)}1(r0L < yt−d 6 r0L +
zL
n

) + op(1)

=

n∑
t=1−j

ξ1t{1−Rt−1(0)}1(r0L < yt−d 6 r0L +
zL
n

) + op(1)

where the op(1) is uniformly for ||z|| 6 B. See also the proof of Theorem 4 in Li, Guan, Li, and

Yu (2015) and Lemma 8.2 in Li, Ling, and Li (2013).

Similarly, we can handle the remaining terms in (6.10). Therefore, (6.9) is implied. With

(6.8) and (6.9), it is clear that (6.7) holds.

For the space D(R2
), we define the skorohod metric as d(f, g) =

∞∑
k=1

2−k min{1, dk(f, g)} for

f, g ∈ D(R2
), where dk(f, g) is the skorohod metric on D([−k, k] × [−k, k]), see also Li, Guan,

Li, and Yu (2015), Li and Ling (2012) and (16.4) in Billingsley (1999).

By a technique similar that used in the proof of Theorem 3.3 in Li and Ling (2012) and in the

proof of Theorem 5 in Li, Ling, and Zhang (2016), together with Theorem 5.5 in Straf (1972),

we are able to conclude that {ϕn(z), z ∈ R2} converges weakly to {ϕ(z), z ∈ R2} as n→∞.

Moreover, (6.7) implies that d(L̃n(z), ϕn(z))→ 0 in probability as n→∞. By Theorem 3.1

in Seijo and Sen (2011), it is readily seen that n(r̂L − r0L)→M
(L)
− and n(r̂U − r0U )→M

(U)
− in

distribution as n→∞ respectively. The remainder of the proof is similar to that of Theorem 2

in Chan (1993)).

6.5 Proof of Theorem 5

From Theorem 2 and 3, r̂L and r̂U are super-consistent, and d̂ is consistent with integer values.

Therefore, it can be assumed that the true values of (rL, rU , d) are known, indicating the true

Regime indicators Rt are known.

By definition,
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BIC(p) =

n∑
t=1

lt(θ̂) + (2p+ 2) log n1 + (2p+ 2) log n2

=

n∑
t=1

l1t(θ̂)Rt +

n∑
t=1

l2t(θ̂)(1−Rt) + (2p+ 2) log n1 + (2p+ 2) log n2

=

n∑
t=1

l1t(λ̂1)Rt +

n∑
t=1

l2t(λ̂2)(1−Rt) + (2p+ 2) log n1 + (2p+ 2) log n2

where l1t(θ) = l1t(λ1) and l2t(θ) = l2t(λ2) are defined at the beginning of the proof of Theo-

rem 2.

We first consider the case p > p0. Below we introduce notations λp,λp0 and λ̂
p

to emphasize

their dependence on the order p. Under the situation p > p0, the model with order p corresponds

to a bigger model, and we have

l1t(λ
p
10) = l1t(λ

p0
10), l2t(λ

p
20) = l2t(λ

p0
20)

By an intermediate result in the proof of Theorem 4 in Li et al. (2017), we know

n∑
t=1

l1t(λ̂
p0
1 )Rt −

n∑
t=1

l1t(λ
p0
10)Rt = Op(1)

n∑
t=1

l1t(λ̂
p

1)Rt −
n∑
t=1

l1t(λ
p
10)Rt = Op(1)

n∑
t=1

l2t(λ̂
p0
2 )(1−Rt)−

n∑
t=1

l2t(λ
p0
20)(1−Rt) = Op(1)

n∑
t=1

l2t(λ̂
p

2)(1−Rt)−
n∑
t=1

l2t(λ
p
20)(1−Rt) = Op(1)

As a result,
n∑
t=1

l1t(λ̂
p

1)Rt −
n∑
t=1

l1t(λ̂
p0
1 )Rt =[

n∑
t=1

l1t(λ̂
p

1)Rt −
n∑
t=1

l1t(λ
p
10)Rt]

− [

n∑
t=1

l1t(λ̂
p0
1 )Rt −

n∑
t=1

l1t(λ
p0
10)Rt]

+ [

n∑
t=1

l1t(λ
p
10)Rt]−

n∑
t=1

l1t(λ
p0
10)Rt] = Op(1)

n∑
t=1

l2t(λ̂
p

2)(1−Rt)−
n∑
t=1

l2t(λ̂
p0
2 )(1−Rt) =[

n∑
t=1

l2t(λ̂
p

2)(1−Rt)−
n∑
t=1

l2t(λ
p
20)(1−Rt)]

− [

n∑
t=1

l2t(λ̂
p0
2 )(1−Rt)−

n∑
t=1

l2t(λ
p0
20)(1−Rt)]

+ [

n∑
t=1

l2t(λ
p
20)(1−Rt)−

n∑
t=1

l2t(λ
p0
20)(1−Rt)]

= Op(1)

Therefore, BIC(p) − BIC(p0) = Op(1) + 2(p − p0) log n1n2 → ∞ as n → ∞, since n1

n →

Pr(Rt = 1) > 0 and n2

n → Pr(Rt = 0) > 0 as n→∞.
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We then consider the case p < p0. Again by an intermediate result in the proof of Theorem

4 in Li et al. (2017), we know

n∑
t=1
l1t(λ̂

p

1)Rt −
n∑
t=1
l1t(λ̂

p0

1 )Rt = Op(1) + op(n1) + c1n1

n∑
t=1
l2t(λ̂

p

2)(1−Rt)−
n∑
t=1
l2t(λ̂

p0
2 )(1−Rt) = Op(1) + op(n2) + c2n2

where c1, c2 are positive constants, defined in the same way as constant c in Li et al. (2017).

Therefore, BIC(p)− BIC(p0) = c1n1 + c2n2 +Op(1) + op(n1) + op(n2) + 2(p− p0) lnn1n2

= c3n+Op(1) + op(n) +O(lnn)

→∞ as n→∞
since constant c3 > 0, n1

n → Pr(Rt = 1) > 0 and n2

n → Pr(Rt = 0) > 0 as n→∞.
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Figure 1: Histograms of random variables n(r̂L − rL)(upper panels) and n(r̂U − rU )(lower

panels)

Figure 2: Time plots of weekly closing prices of Hang Seng Index (HSI) from January 2000 to

December 2007(upper panel) and corresponding log retuns(lower panel)
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Figure 3: Sample ACFs of residuals and squared residuals of fitted buffered double autoregres-

sive model in empirical analysis
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