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a b s t r a c t

How to sufficiently use the structure information behind the data is still a challenging
issue. In this paper, a local linear–additive estimation and its relevant version are proposed
to automatically capture the additive information for general multiple nonparametric
regressions. Our method connects two types of local estimators, the local linear (or the
local constant) estimator and the local additive estimator. Thus the new estimators can
achieve an adaptive fitting between the full model and the local (additive) model, and can
adapt to the double additivity: local additivity and global additivity. On the other hand,
like the local linear estimator, the new estimators can obtain the optimal convergence
rate when the model has no additive structure. Moreover, the new estimators have closed
representations and thus make the computation easy and accurate. The theoretical results
and simulation studies show that the new approach has a low computational complexity
and can significantly improve the estimation accuracy. Also a new theoretical framework
is introduced as a foundation of locally and globally connected statistical inference. Based
on this framework, the newly defined estimator can be regarded as a projection of the
response variable onto full function spacewith respect to the locally and globally connected
norms.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Consider the following nonparametric regression:

Y = r(X) + ε, (1.1)

where Y is the real-valued response variable, X = (X (1), . . . , X (p))′ is the p-dimensional covariate and ε is the error with
conditional mean zero and variance σ 2(X) given X . In the full model, we only assume that the unknown regression function

r(x) = E(Y |X = x) (1.2)

is smooth. Such a full model is usually regarded as to be most flexible. Under regularity conditions (e.g., twice continuous
differentiability of r(x)), the convergence rate in mean squared error of a common nonparametric estimator (e.g., kernel
estimator) is of the order O(n−4/(4+p)) [13,14]. This convergence rate is optimal and thus cannot be improved in some sense.
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It implies that the common nonparametric estimators suffer from the curse of dimensionality when the dimension p is
high.

To avoid the problem, one usually considers the model with a specified structure as an approximation to the full model.
Additive model, for instance, is a popular approximation to the full model, which has the special form:

r(x) = µ +

p
k=1

rj(x(j)), (1.3)

where regression functions satisfy E(rj(X (j))) = 0, j = 1, . . . , p. In this paper we prefer to call the above form ‘‘the global
additive model’’ because we will use this terminology to discriminate (1.3) from the local additive model [12]. Benefiting
from the additive assumption of (1.3), the convergence rate in mean squared error of an estimator is of the order O(n−4/5)
as that for p = 1 [15,16,1]. However, the global additive assumption leads to serious bias when the regression function r(·)
is far away from such a global additive form.

Various models with given structure have been extensively investigated in the literature and widely applied in practice.
However, there has been little previous literature on the model structures that can adapt automatically to the data from the
underlyingmodel. How to sufficiently use the structure information behind the data is still a challenging issue. Studer, Seifert
and Gasser [17] proposed a globally penalized estimator (GPE) by penalizing the nonadditivity of local linear estimator. Such
an innovative estimator offers an adaptive combination between the full model (1.2) and the global additive model (1.3),
instead of the single use of either the full model or the global additive model. Thus the method is automatically adaptive to
the global additivity. However, the estimator is based only on a global penalty and thus the information of local additivity
is not taken into account. It can be shown that this method is not adaptive to local additivity. For illustration, we consider
the following regression function:

r(x) = x21 + x22 + x21x
2
2. (1.4)

When x21x
2
2 is small enough, the function is approximately additive. But the local additivity in the local region {(x1, x2) :

x21x
2
2 < C} cannot be captured by the global nonadditivity penalty, where C > 0 is a small constant. In Section 5, we will

further illustrate this point of view by simulation. Moreover, the method is computationally intensive and involves the
dimensional problem becausem(p+ 1) values of some functions at grids have to be estimated in the calculation procedure,
where m = m1 × · · · × mp and mk, k = 1, . . . , p, should tend to infinity to guarantee the accuracy of the calculation.
Park and Seifert [12] employed a local additive estimator to capture the underlying local additivity of regression function.
This estimator behaves well in the sense that it outperforms the local linear estimator when the true model is close to the
additive model locally and is better than the global additive estimator when the true model is far away from the global
additive structure. However, when the model is globally nonadditive, unlike the local linear estimator, the local additive
estimator cannot achieve the optimal convergence rate because in the estimation procedure it only uses the estimation
method designed for the additive model.

Motivated by the ideas of Studer, Seifert and Gasser [17] and Park and Seifert [12], in this paper we suggest a local
linear–additive estimator and its relevant version to capture the local and global additive information for general nonpara-
metric regression. The main idea of the new method is that an adaptive combination between the local linear estimation
and the local additive estimator (rather than global additive estimator) is built by a local–global nonadditive penalty. For
example, consider the regression function in (1.4). In local region {(x1, x2) : x21x

2
2 < C}, we use an additive model (local

additive estimation) to fit the regression function and in local region {(x1, x2) : x21x
2
2 ≥ C}, we use the full model (local

linear estimation) to fit the regression function. If we are able to explore the local additivity by a data driven method, an
adaptive combination between the localmodel and full model could be achieved. Our estimation therefore has the following
distinguishing features:

(1) the newmethod can achieve an adaptive fitting between the fullmodel and local additivemodel and therefore can adapt
to the double additivity: local additivity and global additivity. More precisely, when the true model is approximately
or completely additive in a local region, the estimation procedure is automatically adjusted to fit the corresponding
additive model in this local region; when the true model is globally additive, the estimator is adjusted automatically to
be an additive estimator; when the true model is completely nonadditive, the estimator can approach the local linear
estimator and the optimal convergence rate is attained as well;

(2) although new idea is motivated by Studer, Seifert and Gasser [17], the new one connects two types of local estimators.
Hence, the resultant estimators have closed representations and make the computation easy and accurate;

(3) a new theoretical framework is introduced as a foundation of locally and globally connected statistical inference. In the
framework, locally and globally connected norms and relevant projections are defined, and based on the newly defined
norms and projections, the new estimator can be regarded as a projection of response variable onto the full function
space with respect to the locally and globally connected norms.

The remainder of the paper is organized in the followingway. After a brief review of the local linear and the local additive
estimators, the local linear–additive estimation and relevant version are defined and their properties are investigated in
Section 2. Adaptive selections for regularization parameters and the computational steps are presented in Section 3 and in
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the computational aspect, themain feasibility and limitation of such type of estimators are discussed. The general theoretical
framework is established in Section 4. Simulation studies are given in Section 5 and the proof for theorem is postponed to
Appendix.

2. Local linear–additive estimation

2.1. Brief reviews

To get the motivation for new theoretical and methodological developments, we first briefly review the relevant back-
grounds. It is known that the local linear estimation for nonparametric regression function r(x) in full model (1.2) is defined
as r̃ll(x) = β̃(0)(x) with β̃(0)(x) being the first component of the following solution:

(β̃(0)(x), β̃(1)(x), . . . , β̃(p)(x))′ = argmin
β

n
i=1


Yi − β(0)

−

p
j=1

β(j)


X (j)
i − x(j)

hj

2

Kh(Xi, x), (2.1)

where β = (β(0), β(1), . . . , β(p))′, and (Xi, Yi), i = 1, . . . , n, are i.i.d. observations from the model (1.1). Here Kh(X, x)
is a p-dimensional kernel function; for example, it can be chosen as the product form: Kh(X, x) = h−1

1 K( X(1)
−x(1)
h1

) · · ·

h−1
p K( X(p)

−x(p)
hp

), where K(·) is a 1-dimensional kernel function and hj are the corresponding bandwidths. It is known that
this estimator asymptotically achieves the linear minimax risk when spherically symmetric Epanechnikov kernels are used;
see [2] for the case of p = 1, and [3] for the case of p > 1. As wasmentioned in Introduction, the optimal rate of convergence
inmean squared error is of order O(n−4/(4+p)), thus it suffers from the curse of dimensionality when the dimension p is high.
This leads to the consideration of less general models. Global additive model, for instance, is a common approximation to
the full model r(x), which has the special form as in (1.3). The convergence rate of the estimator based on the global additive
assumption is of the order O(n−4/5) as for p = 1. But the global additive assumption results in serious bias due to neglecting
the nonadditive component of the regression function. Studer, Seifert andGasser [17] introduced a global penalty to combine
the local linear and global additive estimators. Such an idea can achieve smooth choice between the two estimators and
thus can adapt to the global additivity. As was stated in the Introduction, however, the estimator is not adaptive to the local
additivity, and is computationally intensive and involves the dimensional problem in the procedure of calculation.

Park and Seifert [12] employed a local additive estimator to partially avoid the above problems. Assume without loss
of generality that X has compact support [−1, 1]p. For w = (w(1), . . . , w(p))′ and a given point x ∈ (−1, 1)p, consider a
p-dimensional rectangular region [x ± w] = {X : X ∈ [x − w, x + w]}. Suppose that all w(j), j = 1, . . . , p, are of the same
order and let w(j)

= η for the simplicity of notation. Here η may depend on x : η = η(x). Write

U =
X − x

η
. (2.2)

Then U is a re-scaled random vector defined on [−1, 1]p. Denote by nx the number of data Ui = (Xi − x)/η in [−1, 1]p. By
the new variable U , the corresponding regression function can be rewritten as

rx(u) = r(x + ηu). (2.3)

Consequently, an estimator of r(·) at x is defined as

r̃lad,η(x) = r̃ad,x(u)|u=0, (2.4)

where r̃ad,x(u) is a global additive estimator of rx(u) based on data Ui in [−1, 1]p. More precisely, it is first assumed that

rx(u) = µ +

p
j=1

rj(u(j)), (2.5)

and then rx(u) is estimated by data Ui in [−1, 1]p and the existing methods designed for global additive model, such as
backfitting [1,10], marginal integration [9,8] and two-stage estimation [6,7]. If the resultant estimator is denoted by r̃ad,x(u),
then its value at u = 0 is the local additive estimator as in (2.4). Particularly, when η → ∞, the resultant estimator r̃lad,∞(x)
is indeed the global additive estimator of r(x), which is obtained as themodel could be exactly expressed as a global additive
model as in (1.3). If η is small, the estimator r̃lad,η(x) is related only to the data in the local region [x ± w] and depends on
the local additive assumption on [x ± w]. Then one calls it the local additive estimator. This estimator behaves well in the
sense that it outperforms the local linear estimator when the true model is close to the additive model locally or globally,
and is better than the global additive estimator when the true model is far away from the global additive structure.

However, unlike the local linear estimator, the local additive estimator does not have the optimal property for general
models, i.e., when the model is (globally) nonadditive, unlike the local linear estimator, the local additive estimator cannot
achieve the optimal convergence rate of order O(n−4/(4+p)). It is because, as was shown above, the approach only uses the
estimation method designed for (locally) additive model (2.5) to estimate the regression function.



L. Lin et al. / Journal of Multivariate Analysis 123 (2014) 252–269 255

Thus, it is desirable to develop a new methodology that can adapt to the local and global additivity automatically when
the model has the additivity, and can achieve the optimal convergence rate of order O(n−4/(4+p)) if the model is (globally)
nonadditive.

2.2. Local linear–additive estimation

To construct a new estimator, here we briefly reexamine the local additive estimator defined by (2.4). In fact it can be
obtained by minimizing

1
nx

nx
i=1


Y (Ui) − β(0)(u) −

p
j=1

β(j)(u(j))
U (j)
i − u(j)

hj(x)

2

Kn(Ui − u) (2.6)

with respect to β(0)(u) and β(j)(u(j)), j = 1, . . . , p, respectively, where nx is the number of data Ui in [−1, 1]p and Y (Ui) are
the corresponding responses. Note that here β(j)(u(j)), j = 1, . . . , p, depend only on the components u(j) of u, respectively.
Denote by r̃ad,x(u) and r̃ (j)

ad,x(u
(j)), j = 1, . . . , p, the solutions of β(0) and β(j), j = 1, . . . , p, respectively. Then r̃ad,x(u)

evaluated at u = 0 is just the local additive estimator defined by (2.4).
Although local additive estimator r̃ad,x(u) obtained by minimizing (2.6) and local linear estimator r̃ll(x) given by (2.1) are

respectively local estimators of the regression function r(x) that only use the data around x, the corresponding models do
not involve any structural constraint, essentially. This property provides us a reason to combine (2.6) and (2.1) to define the
local linear–additive estimator by minimizing

1
n

n
i=1


Yi − β(0)

−

p
j=1

β(j) X
(j)
i − x(j)

hj

2

Kh(Xi − x)

+ λη(x)
1
nx

nx
i=1


β(0)

− r̃ad,x(u) +

p
j=1

(β(j)
− r̃ (j)

ad,x(u
(j)))

U (j)
i − u(j)

hj(u)

2

Kh(Ui − u) (2.7)

with respect to β(0) and β(j), j = 1, . . . , p. In (2.7), hj and hj(u) may be different; the former is the global bandwidth used
for the local linear estimator and the latter is the local bandwidth used for the local additive estimator. Note that here
β(j), j = 1, . . . , p, are functions of the vector u, thus they are different from those used in (2.6), in which each β

(j)
x (u(j))

depends only on the corresponding component u(j). In (2.7), λ ≥ 0 and η(x) ≥ 0 are the global and the local penalty
parameters, respectively. We use them to penalize the global and the local nonadditivity of the local linear estimator. The
adaptive selections for λ and η(x) will be given in Section 4. Denote by r̂ (0)

λ,η,x(u) and r̂ (j)
λ,η,x(u), j = 1, . . . , p, the solutions

respectively of β(0) and β(j), j = 1, . . . , p, in the optimization problem above. Then

r̂ (0)
λ,η(x) = r̂ (0)

λ,η,x(u)|u=0 (2.8)

is defined as the local linear–additive estimator of r(x).
The objective function (2.7) combines the local linear estimator with the local additive estimator, instead of the global

additive estimator. A reasonwhywe do so is that the local additive estimator can capture the local additivity by use of a small
η, and can capture the global additivity by use of a large η. Intuitionally, the objective function (2.7) allows penalizing the
global and local nonadditivity of regression function. The resulting estimator (2.8) can achieve an adaptive fitting between
the full model and local additive model by choosing λ and η(x). More particularly, for λη(x) = 0, we get the local linear
estimator and for λη(x) = ∞ we obtain the local additive estimator; for general λ and η(x) we get a family of estimators
connecting the local linear estimator with the local additive estimator. We therefore call the estimator in (2.8) the local
linear–additive estimation. In Section 4 we will propose a theoretical foundation to guarantee that the local linear–additive
estimator is the projection of the response variable onto the full function space with respect to a new locally and globally
connected norm.

To simplify the representation, we use matrices and vectors to represent the above estimator. Denote

β = (β(0), β(1), . . . , β(p))′, r̃ad,x(u) = (r̃ad,x(u), r̃
(1)
ad,x(u

(1)), . . . , r̃ (p)
ad,x(u

(p)))′,

Wx = diag(Kh(X1, x), . . . , Kh(Xn, x)), Wu = diag(Kh(U1, u), . . . , Kh(Unx , u)),

X̃ =


1

X (1)
1 − x(1)

h1
· · ·

X (p)
1 − x(p)

hp
· · · · · · · · · · · ·

1
X (1)
n − x(1)

h1
· · ·

X (p)
n − x(p)

hp

 , Ũ(u) =


1

U (1)
1 − u(1)

h1(u)
· · ·

U (p)
1 − u(p)

hp(u)
· · · · · · · · · · · ·

1
U (1)
nx − u(1)

h1(u)
· · ·

U (p)
nx − u(p)

hp(u)

 .



256 L. Lin et al. / Journal of Multivariate Analysis 123 (2014) 252–269

Thus the new estimator can be expressed as r̂ (0)
λ,η(x) = β̂

(0)
x (u)|u=0 with β̂

(0)
x (u) being the first component of the following

solution:

(β̂(0)
x (u), β̂(1)

x (u), . . . , β̂(p)
x (u))′ = argmin

β


1
n
(Y − X̃β)′Wx(Y − X̃β)

+ λη(x)
1
nx

(β − r̃ad,x(u))′Ũ′(u)WuŨ(u)(β − r̃ad,x(u))


. (2.9)

Solving the above optimalization problem yields

r̂ (0)
λ,η(x) = e′

1


1
n
X̃′WxX̃ +

λη(x)
nx

Ũ′(u)WuŨ(u)

−1 
1
n
X̃′WxY +

λη(x)
nx

Ũ′(u)WuŨ(u)r̃ad,x(u)


u=0

, (2.10)

where e1 = (1, 0, . . . , 0)′. Such an estimator can be further expressed as a weighted sum of the local linear estimator and
the local additive estimator as

r̂ (0)
λ,η(x) = W1(x; λ, η)β̃(x) + W2(x; λ, η)r̃ad,x(u)|u=0, (2.11)

where β̃(x) is the local linear estimator of β defined by

β̃(x) =


1
n
X̃′WxX̃

−1
1
n
X̃′WxY,

r̃ad,x(u) is the local additive estimator that can be expressed as

r̃ad,x(u) =


1
n
Ũ′(u)WuŨ(u)

−1
1
n
Ũ′(u)WuY(u)

with Y(u) = (Y (U1), . . . , Y (Unx))
′ being given in (2.6), and weights

W1(x; λ, η) = e′

1


1
n
X̃′WxX̃ +

λη(x)
nx

Ũ′(u)WuŨ(u)

−1
1
n
X̃′WxX̃,

W2(x; λ, η) = e′

1


1
n
X̃′WxX̃ +

λη(x)
nx

Ũ′(u)WuŨ(u)

−1
λη(x)
nx

Ũ′(u)WuŨ(u).

The new estimator has the explicit representation (2.10) and (2.11). Thus the computation procedure can be easily
implemented. The existingmethod of Studer, Seifert andGasser [17], however, cannot achieve this goal because it is involved
with both local and global estimators: local linear estimator and global additive estimator. Moreover, the estimator is an
adaptive combination between the full model and the local additive model by selecting regularization parameters λ and η.

2.3. Local N-W-additive estimator

To further facilitate the estimation procedure, we now consider a special version. In the procedure above, set β(j)
=

r (j)
ad,x = 0 for j = 1, . . . , p. We then get a special estimator as

r̃NWλ,η (x) = argmin
β(0)

1
n

n
i=1


Yi − β(0)

2
Kh(Xi, x) + λη(x)(β(0)

− r̃lad,η(x))2,

where r̃lad,η(x) is the local additive estimator defined in (2.4). We call it local N-W-additive estimation (or local constant–
additive estimation). Obviously, the resulting estimator has the following simple form:

r̃NWλ,η (x) =

n−1
n

i=1
YiKh(Xi, x) + λη(x)r̃lad,η(x)

n−1
n

i=1
Kh(Xi, x) + λη(x)

. (2.12)

This estimator is a weighted sum of the standard N-W estimator and the local additive estimator; more precisely,

r̃NWλ,η (x) = W̃1(x; λ, η)r̃NW (x) + W̃2(x; λ, η)r̃lad,η(x),
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where r̃NW (x) is the standard N-W estimator defined by

r̃NW (x) =

n−1
n

i=1
YiKh(Xi, x)

n−1
n

i=1
Kh(Xi, x)

,

and weights W̃1 and W̃2 are expressed as

W̃1(x; λ, η) =

n−1
n

i=1
Kh(Xi, x)

n−1
n

i=1
Kh(Xi, x) + λη

,

W̃2(x; λ, η) =
λη

n−1
n

i=1
Kh(Xi, x) + λη

.

This estimator also offers an adaptive fitting between the full model and the local additive model by selecting regularization
parameters λ and η, and has a more simple explicit representation.

2.4. Asymptotic properties

To get the asymptotic conclusion we need the following conditions:

(C1) : the regression function r and the design density f of X are twice continuously differentiable, and furthermore f is
bounded away from zero on [−1, 1]p;

(C2) : the kernel K is bounded and Lipschitz continuous, has compact support and is symmetric around 0;
(C3) : for some δ > 5/2, E[|Y |

δ
] < ∞;

(C4) : h̃j → 0 such that nxh̃
p
j / log nx → ∞ as nx → ∞, where h̃j = hj/η.

Then we have the following main theorem.

Theorem 1. For model (1.1) with conditions (C1)–(C4), the local linear–additive estimator and local N-W-additive estimator
have the following properties:

(1) if λη → 0, then for x ∈ [−1, 1]p,

r̂ (0)
λ,η(x) = r̃ll(x) + Op(λη) and rNWλ,η (x) = r̃NW (x) + Op(λη).

(2) if p ≤ 8 and λη ≤ c for a positive constant c, then for x ∈ (−1, 1)p,

r̂ (0)
λ,η(x) = r(x) + Op


h2

+
1

√
nhp


and r̃NWλ,η (x) = r(x) + Op


h2

+
1

√
nhp


.

(3) if λη → ∞, then for x ∈ [−1, 1]p,

r̂ (0)
λ,η(x) = r̃lad,η(x) + Op((ηλ)−1) and r̃NWλ,η (x) = r̃lad,η(x) + Op((ηλ)−1).

(4) if model (1.1) is globally additive and λη → ∞, then for x ∈ (−1, 1)p,

r̂ (0)
λ,η(x) = r(x) + Op((ηλ)−1) + Op


h2

+
1

nηp−1h



and r̃NWλ,η (x) = r(x) + Op((ηλ)−1) + Op


h2

+
1

nηp−1h


.

By the theorem, we have the following findings:
(a) the conclusions in Theorem 1(1) and (2) together imply that for the case without global additive structure, the new

estimators perform like the local linear estimator (or N-W estimator) and therefore they can achieve the optimal (or the
standard) convergence rate provided that λ and η are not very large. For achieving this goal, the theoretical constraints on
λ and η are quite mild, for example λ, η ∈ [0, c] with c being an arbitrary fixed positive constant. By comparison, the new
estimators outperform the additive estimators (e.g., the backfitting estimator and marginal integral estimator) when the
model under study is nonadditive;
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(b) the results of Theorem 1(3) indicate that when λ and η is large enough, the new estimators perform like the local
additive estimator and therefore they can adapt to the local additivity of the underlying regression function;

(c) the results of Theorem 1(4) show that if the model is globally additive, the convergence rate of the new estimators
is the same as for p = 1 provided that λ and η are chosen to be large enough. In this case they can avoid the curse of
dimensionality and outperform the estimators (e.g., the local linear estimator) designed for the full model.

In short, all the properties aforementioned reveal that, by choosing regularization parametersλ andη, the newestimators
can adapt to the global and local additivity of the regression function, and moreover, if the model is not additive, they still
behave like the local linear estimator (or N-Westimator) and therefore retain the optimal convergence rate. The next section
will discuss how to obtain the data-driven choices for λ and η.

3. Algorithm aspects

3.1. Regularization parameters and bandwidths selections

Under the transformation (2.2), if the regression function is twice continuous differentiable, then by Taylor expansion, it
can be written as

r(u) ≈ r(x) + η(x)
p

j=1

r ′

j (x)u
(j)

+ 2η2(x)

j<k

r ′′

j,k(x)u
(j)u(k)

= additive + 2η2(x)

j<k

r ′′

j,k(x)u
(j)u(k),

where r ′

j (x) = ∂r(x)/∂x(j) and r ′′

j,k(x) = ∂2r(x)/∂x(j)∂x(k). Then η(x) can possess different degrees of additivity at different
locations. It shows thatwe can use η(x) tomeasure the local additivity. As stated in the previous sectionwe need to construct
adaptive choices for λ, hjη(x) and hj(x). For simplicity we assume that hj = h and hj(x) = hx for j = 1, . . . , p.

We first select the local regularization parameter η(x) and local bandwidth h(x). Motivated by the variable bandwidth
selection [4], we split up the support [−1, 1]p of X into m rectangular regions Rk, k = 1, . . . ,m, satisfying

m
k=1 Rk =

[−1, 1]p and Rk


Rj = φ for k ≠ j. Suppose x ∈ Rkx , where Rkx is an element of {Rk, k = 1, . . . ,m}, denote by mx the
number of data in Rkx , and let Xi(x), i = 1, . . . ,mx, be the covariates in Rkx and Yi(x), i = 1, . . . ,mx, be the corresponding
responses. By the definition of local additive estimator defined in the previous section, the fitted values of the local responses
Yi(x), i = 1, . . . ,mx, can be expressed as

Ỹ(x) = (Ỹ1(x), . . . , Ỹmx(x))
′
= (r̃lad,η(X1), . . . , r̃lad,η(Xmx))

′
= H(x)Y(x),

where Y(x) = (Y1(x), . . . , Ymx(x))
′ and H(x) is the corresponding hat matrix. According to the AIC-type model selection

criterion used for selecting regularization parameter in local additive estimator [12], here we define a local AIC-type model
selection criterion

AIC(hx, η(x)) = log(σ̂ 2(x)) + 2 tr(H(x))/mx, (3.1)

where σ̂ 2(x) = ∥Y(x) − Ỹ(x)∥2/mx. Such a criterion is related only to the data around x and the corresponding responses.
Thus, we choose hx and η(x) byminimizing the local AIC-typemodel selection criterion AIC(hx, η(x)). Denote by h̃x and η̃(x)
the choices of hx and η(x) via the above method, respectively. Note that h̃x and η̃(x) are step functions in the sense that they
are constant in each region Rk and their values in different regions Rk and Rj may be different. We therefore smooth them
by averaging locally. More precisely, we define the smoothed versions of h̃x and η̃(x) respectively by

ĥx =

n
i=1

h̃Xiw(Xi − x)

n
i=1

w(Xi − x)
and η̂(x) =

n
i=1

η̃(Xi)w(Xi − x)

n
i=1

w(Xi − x)
, (3.2)

where w(·) is a weigh function. We use ĥx and η̂(x) as the final choices of hx and η(x), respectively.
Further, by a newly defined estimator, say the local N-W-additive estimator r̃NWλ,η (x), after h(x) and η(x) being estimated

by ĥx and η̂(x) respectively, the fitted value of the global response Y = (Y1, . . . , Yn)
′ can be expressed as

Ỹ = (Ỹ1, . . . , Ỹn)
′
= (r̃NWη̂(X1),λ

(X1), . . . , r̃NWη̂(Xn),λ(Xn))
′
= HY, (3.3)

where H is the corresponding hat matrix. According to the suggestion of Park and Seifert [12], we can choose h and λ by
minimizing the AIC-type model selection criterion

AIC(h, λ) = log(σ̂ 2) + 2 tr(H)/n, (3.4)
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where σ̂ 2
= ∥Y − Ỹ∥

2/n. Denote by ĥ and λ̂ the solutions of h and λ, respectively. This leads to the final choices of h
and λ.

3.2. Computation steps

Nowwe briefly sumup all we have done from the aspect of algorithm. To truly realize the estimation procedures together
with the selections for regularization parameters and bandwidths, we divide the algorithm into the following steps:

Step 1: use the algorithm of calculating local additive estimator r̃lad,η(x) in [12] and the AIC-typemodel selection criterion
to choose the local bandwidth hx and local regularization parameter η(x). As in (3.1), the selected ones can expressed as

(h̃x, η̃(x)) = argmin
(hx,η(x))

AIC(hx, η(x)).

Step 2: smooth h̃x and η̃(x) by averaging locally and then get the smoothed versions as ĥx and β̂(x) as in (3.2).
Step 3: after hx and ηx being estimated by ĥx and η̂x respectively, employ the newly defined estimator, say the local N-W-

additive estimator r̃NWλ,η (x), to express the global response vector Ỹ = (Ỹ1, . . . , Ỹn)
T as in (3.3), and then choose the global

bandwidth ĥ and global regularization parameter λ̂ by minimizing the AIC-type model selection criterion. As in (3.4), the
selected ones can be written as

(ĥ, η̂) = argmin
(h,η)

AIC(h, η).

Step 4: use the regularization parameters and bandwidths obtained from Step 1 to Step 3, together with formulas in
Sections 2.2 and 2.3, to construct the weightsW1(x; λ̂, η̂(x)) and W2(x; λ̂, η̂(x)) (or W̃1(x; λ̂, η̂(x)) and W̃2(x; λ̂, η̂(x))).

Step 5: finally, combine the local linear estimator β̃(x) (or N-W estimator r̃NW (x)) and the local additive estimator
r̃lad,η̂(x)(x) through the weights obtained in Step 4 to conduct the local linear–additive estimator r̂ (0)

λ̂,η̂(x)
(x) as in (2.11) or

local N-W-additive estimator r̃NW
λ̂,η̂(x)

(x) as in (2.12).
Asmentioned in the previous sections and the computation steps above, the new estimators have closed expressions and

moreover, can be written as weighted sums of known estimators: local linear estimator and local additive estimator. The
existing algorithms for local linear estimator and local additive estimator can be employed in our computation procedures.
Thus, the computational complexity is relatively low and the estimation procedures can be easily implemented. Neverthe-
less, unlike the earlier estimators, such as local linear and local additive estimators, and globally penalized estimator, the
new estimators involve two regularization parameters (local and global regularization parameters), the choices for them
are relatively complex. This is the main limitation of such type of methods. However, to adapt to the double additivity, such
a computational cost is worthwhile to pay.

4. Theoretical framework

Nowwe turn to establishing the theoretical framework for the globally and locally connected inference. We will use the
theory to prove that the new estimation performs like a projection, i.e., it is a projection of the response variable onto the
full function space with respect to the newly defined norm.

4.1. Globally design-dependent norm and projection

According to Studer, Seifert and Gasser [17], and Mammen, Linton and Nielsen [10], we now outline some design-
dependent definitions. Denote the vector space of (n + 1)(p + 1) functions by

F =

r = (r (i,l)

| i = 0, . . . , n; l = 0, . . . , p)| r (i,l)
: [−1, 1]p → R


.

Set the projection P0 on F by replacing r (i,l) with r (0,l), i.e., if r̆ = P0r , then r̆ (i,l)
= r (0,l). The image of P0 is denoted by

Ffull, that is

Ffull =

r = (r (0), . . . , r (p))| r (l)

: [−1, 1]p → R, l = 0, . . . , p

,

inwhich the index i is omitted for the simplicity of notation. By the definitions given above, the observations Yi, i = 1, . . . , n,
can be coded as r ∈ F by

r (i,l)
Y =


Yi, for i > 0 and l = 0,
0, otherwise.

Define the design-dependent seminorm on F by

∥r∥2
=


[−1,1]p

1
n

n
i=1


r (i,0)(x) +

p
j=1

r (i,j)(x)
X (j)
i − x(j)

hj

2

Kh(Xi, x)dx, (4.1)
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where the bandwidths hj may be different from those used before, but for the simplicity of representation, we use the same
notations without confusion. Then for r ∈ Ffull we have

∥rY − r∥2
=


[−1,1]p

1
n

n
i=1


Yi − r (0)(x) −

p
j=1

r (j)(x)
X (j)
i − x(j)

hj

2

Kh(Xi, x)dx,

and consequently, the local linear estimator r̃ll(x) can be thought of as the projection of rY = (Y1, . . . , Yn)
′ to Ffull with

respect to the seminorm above [11].

4.2. Locally design-dependent norm and projection

Nowwe introduce new local norm and projection. For the re-scaled variable U given in (2.2) and the corresponding local
function rx(u) in (2.3), similar to the definitions of F and Ffull, we define local functional spaces

Fx =

r =


r (i,l)
x | i = 0, . . . , nx; l = 0, . . . , p


| r (i,l)

x : [−1, 1]p → R


with nx being the number of data Ui in [−1, 1]p, and

Ffull,x =

rx =


r (0)
x , . . . , r (p)

x


| r (l)

x : [−1, 1]p → R, l = 0, . . . , p

.

Correspondingly, the locally design-dependent seminorm on Fx is given by

∥r∥2
x =


[−1,1]p

1
nx

nx
i=1


r (i,0)
x (u) +

p
j=1

r (i,j)
x (u)

U (j)
i − u(j)

hj(x)

2

Kh(Ui, u)du. (4.2)

Furthermore, we define the local additive subspace by

Fad,x =


rx ∈ Ffull,x| r (0)

x (u) = r (0)
ad,x(u) is additive and r (j)

x (u) = r (j)
ad,x(u

(j)) depends only on u(j) for j = 1, . . . , p


.

Under this situation, the local additive estimator r̃lad,η in (2.4) could be regarded as the projection of rY = (Y1, . . . , Yn)
′

onto the local additive subspace Fad,x with respect to the seminorm in (4.2). Moreover, we denote by rad,x = Pxrx the local
additive projection Px from Ffull,x to Fad,x, where rx ∈ Ffull,x and rad,x ∈ Fad,x. More precisely, rad,x(u) =

p
j=1


[−1,1]p−1 rx

(u)du(−j)
− (p − 1)


[−1,1]p rx(u)du and r (j)

ad,x(u
(j)) =


[−1,1]p−1 r

(j)
x (u)du(−j), where


[−1,1]p−1 · · · du(−j) denotes the integral

with respect to all components of u except u(j).

4.3. Locally and globally connected projection and estimation

Instead of the use of the global additive estimator, nowwe use the local additive estimator to build a new penalized local
linear estimator. To this end, we further introduce a penalized (or locally and globally connected) seminorm on Ffull as

∥r∥2
λ,η = ∥r∥2

+ λη(x)∥(Jx − Px)P0,xTxrx∥2
x , (4.3)

where Jx is the identity on Fx, P0,x is the projection on Fx by replacing r (i,l)
x with r (0,l)

x , Tx : rx = Txr is the re-scale
transformation defined by (2.3). Based on the new seminorm (4.3), we obtain a new estimator r̂ (0)

λ,η(x, u) of r(x) as the

minimizer of ∥rY − r∥2
λ,η for r ∈ Ffull. Thus r̂

(0)
λ,η(x, u) evaluated at u = 0 is the final estimator of r(x). Note that P0,xrY = 0

and for r ∈ Ffull, P0,x is the identity. Thus ∥rY − r∥2
λ,η can be represented in detail as

∥rY − r∥2
λ,η = ∥rY − r∥2

+ λη(x)∥rx − rlad,η∥2
x

with

∥rY − r∥2
=

1
n


[−1,1]p

n
i=1


Yi − r (0)(x) −

p
j=1

r (j)(x)(X (j)
i − x(j))/hj

2

Kh(Xi − x)dx,

∥rx − rlad,η∥2
x =

1
nx


[−1,1]p

n∗
i=1


r (0)
x (u) − rad,x(u) +

p
j=1

(r (j)
x (u) − r (j)

ad,x(u
(j)))(U (j)

i − u(j))/hj(x)

2

Kh(Ui − u)du.

It shows that the new estimator r̂λ,η,x(u) is the projection of rY = (Y1, . . . , Yn) onto the full space Ffull with respect to the
seminorm (4.3).

Then the remainder is to find the relation between the estimator defined here and the estimator defined in Section 2.2.
Since our interest is to estimate r (0)(x) (or (r (0)(x), r (1)(x), . . . , r (p)(x))), rad,x(u) and r (j)

ad,x(u
(j)), j = 1, . . . , p, in (4.3) can
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be replaced respectively by their estimators r̃ad,x(u) and r̃ (j)
ad,x(u

(j)), j = 1, . . . , p, which are obtained based on the (local)
additive model (2.5) with local data Ui ∈ [−1, 1]; for details see Section 2.2. Therefore, the new estimator can be expressed
as r̂ (0)

λ,η(x, u) = β̂(0)(x, u) with β̂(0)(x, u) being the first component of the following solution:

(β̂(0)(x, u), β̂(1)(x, u), . . . , β̂(p)(x))′ = arg min
β(0),β(1),...,β(p)

{∥rY − r∥2
+ λη(x)∥rx − r̃lad,η∥2

x}, (4.4)

where

∥rY − r∥2
=


[−1,1]p

1
n

n
i=1


Yi − β(0)

−

p
j=1

β(j)(X (j)
i − x(j))/hj

2

Kh(Xi − x)dx,

∥rx − r̃lad,η∥2
x =

1
nx


[−1,1]p

n∗
i=1


β(0)

− r̃ad,x(u) +

p
j=1

(β(j)
− r̃ (j)

ad,x(u
(j)))(U (j)

i − u(j))/hj(x)

2

Kh(Ui − u)du.

However, the above integrations with respect to dx and du have no effect because the minimum can be found for each x and
u, individually. By this reason and the same argument as in [10], we can delete the integrations in (4.4) and consequently,
the minimizer in (4.4) can be rewritten by the minimizer in (2.7). We therefore have the conclusion:

Theorem 2. The new estimation defined in (2.8) is exactly the projection of rY = (Y1, . . . , Yn) onto the full space Ffull with
respect to the seminorm (4.3).

Wecan see that the above framework formulates a theoretical foundation for the globally and locally connected inference.

5. Simulation studies

In this section, we examine our method by simulation studies. In the following, the figures of the estimated regression
surfaces, the corresponding integrated squared errors (ISE) andmean integrated squared errors (MISE) are used to compare
our local N-W-additive estimate (LNWADE) and local linear–additive estimate (LLADE) with the common competitors
including the local linear estimate (LLE), the local additive estimate (LADE), the additive estimate (AE) and the globally
penalized estimator (GPE). To obtain comprehensive comparisons, we investigate the behaviors of these estimations in
several models such as global additive model, local additive model and completely nonadditive model with dimensions
p = 2 and p > 2. As shown in computation steps, in the simulation procedure, the data-driven method is employed
to select h, η and λ, and the product Epanechnikov kernel is used to construct nonparametric estimation. Also, for other
nonparametric estimators, the bandwidths are chosen by data-driven methods such as CV and GCV.

In the following Sections 5.1–5.3, we first consider various types of models with dimension p = 2, and in Section 5.4,
we then study three models having dimension p = 10. Most models below are the same as in [17] or [12]. Thus, to obtain
comparable conclusions, we choose the same model conditions and the same criterion ISE or MISE as used respectively by
them to evaluate the estimators.

5.1. Nonadditive regression

Example 1. Consider the following nonadditive regression function:

r(x) = 15e−32∥x−(1/4)1∥2
+ 35e−128∥x−(3/4)1∥2

+ 25e−2∥x−(1/2)1∥2 ,

where x = (x1, x2)′ and 1 = (1, 1)′. Thismodelwas investigated by Studer, Seifert andGasser [17]. To get the true regression
surface, 200 random points of X are generated uniformly on [0, 1]2; see Fig. 1(a). Then, by regression function r(x) given
above, the figure of true regression surface is obtained, which is reported in Fig. 1(b). Furthermore, in the corresponding
nonadditive regression model:

Y = r(X) + ε,

X is uniformly distributed on [0, 1]2 and ε is normally distributed with mean zero and variance σ 2
= 0.52. The sample size

is chosen as n = 200. The simulated regression surfaces for r(x) are reported in Fig. 2 and the ISEs of the new estimators
and the competitors are listed in Table 1.

By Fig. 2 and the ISEs given in Table 1, we have the following findings: (1) when the regression function is completely
nonadditive, the local linear estimator, the local-additive estimator, the globally penalized estimator and the two new
estimators, the local N-W-additive estimator and the local linear–additive estimator, perform almost equally well, but the
two new estimators are slightly better than the local linear estimator, the local-additive estimator and the globally penalized
estimator in under the criterion of the ISE.More precisely, the five simulated regression surfaces are close to the true one (see
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Fig. 1. Figures (a) and (b) are respectively the 200 random points of X and the true regression surface in Example 1.

Table 1
ISEs of six estimators in Example 1.

Estimators LLE AE LADE GPE LNWADE LLADE

ISE 8.4 17.2 6.7 6.4 6.3 6.1

Fig. 2(a), (c), (d), (e) and (f)), and the corresponding ISEs are relatively small. It is known that for nonparametric regression
without any structure assumption, the local linear estimator has the optimal property in the sense of convergence rate. The
simulation shows that in this case the two new estimators are comparable to the local linear estimator and thus have the
same optimal property. (2) Because the model is completely nonadditive, the local additive estimator is somewhat wiggly
and the additive estimation is the worst among the six estimators.

5.2. Additive regression

Example 2. Consider the following additive regression function:

r(x) =

2
k=1


15
2

e−32(xk−1/4)2
+

35
2

e−128(xk−3/4)2
+

25
2

e−128(xk−1/2)2


.

Thismodelwas investigatedby Studer, Seifert andGasser [17] aswell. In the corresponding regressionmodel,X is distributed
as the same as in Example 1, and the error ε is normally distributed with mean zero and variance σ 2

= 0.52. We choose
n = 200 in the simulation procedure. The true regression surface and the estimated regression surfaces are reported in
Figs. 3 and 4, respectively. The ISEs of the six estimators are listed in Table 2.

The Fig. 4 and the ISEs given Table 2 lead to the following conclusions: (1) when the regression function is completely
additive, the additive estimator and the two new estimators have the similar behavior, i.e., the three simulated regression
surfaces are close to the true one and the corresponding ISEs are approximately equal to each other. When the model is
additive, the additive estimator has the optimal property in the sense of convergence rate. In this case, our estimators are
comparable to the additive estimator; (2) the global penalized estimator and the local additive estimator are slightly biased
because the estimated regression surfaces are smooth but the corresponding ISEs are slightly large. The local linear estimator
is the worst among the six estimators.

5.3. Local additive model

Example 3. We first consider the following local additive regression function:

r(x) = x21 + x22 +
α

1 − α
x21x

2
2,

where constant α controls the amount of nonadditive structure in the function. This model was considered in [12]. In the
model, when x21x

2
2 is small enough, the function is approximately additive. In the corresponding regression model, X is
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the local linear estimator the additive estimator

the local additive estimatorthe globally penalized estimator

the local linear–additive estimatorthe local N–W additive estimator

a b

c d

e f

Fig. 2. Figures (a), (b), (c), (d), (e) and (f) are respectively the local linear estimator surface, the additive estimator surface, the globally penalized estimator
surface, the local additive estimator surface, the local N-W-additive estimator surface and the local linear–additive estimator surface in Example 1.

Table 2
ISEs of six estimators in Example 2.

Estimators LLE AE LADE GPE LNWADE LLADE

ISE 11.2 6.4 9.6 8.1 7.3 6.9

Table 3
MISEs of six estimators in Example 3.

Estimators LLE AE LADE GPE LNWADE LLADE

MISE 8.3 15 6.4 7.2 6.1 5.8

uniformly distributed on [−1, 1]2 and the error is normally distributed as N(0, σ 2) with σ 2
= 0.52. In the simulation

procedure, we choose n = 400 and α = 0.4. The contour plots of the true regression surface and the estimated regression
surfaces are presented in Fig. 5. The MISEs of the six estimators are given in Table 3.
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Fig. 3. Figures (a) and (b) are respectively the 200 random points of X and the true regression surface in Example 2.

Table 4
ISEs of six estimators in Example 4.

Estimators LLE AE LADE GPE LNWADE LLADE

ISE 9.1 16 7.2 7.9 6.5 5.3

By comparing the contour plots and the MISEs, we have the following conclusions: (1) the local additive estimator and
the two new estimators can capture the local additive information of the true regression surface such that the corresponding
contour plots are similar to the true one in the sense that three contours have similar shape and tendency, and the MISEs
of the local additive estimator and the two new estimators are relatively small; (2) the MISEs of the globally penalized
estimator is larger than those of the local additive estimator and the new estimators. This illustrates that the globally
penalized estimator cannot capture the local additive information. The behaviors of the local linear estimator and the
additive estimator behave poorly and the additive estimator is the worst one among the six estimators.

Example 4. To further examine if the aforementioned estimators can capture the local additive information, we consider
the following local additive regression function:

r(x) =

2
k=1


25
2

e−32(xk−1/2)2


+
25
2

(x1 − 1/2)3(x2 − 1/2)3.

Similar to the regression function in Example 3, the above regression function is local additive, i.e., when x1 and x2 are close
to 1/2, the regression function is additive approximately. The distribution conditions on X and the regression error are the
same as in Example 2. The main difference from Example 3 is that here the regression surface is more wiggly. The ISEs of
the six estimators are reported in Table 4. The true regression surface and the estimated regression surfaces are presented
in Figs. 6 and 7, respectively. Similar to the conclusions in Example 3, the local additive and our new estimators can capture
the local additive information; the details are omitted here.

In summary, all the simulation conclusions are coincident with the theoretical properties mentioned in the previous
sections. In other words, the new estimators (the local N-W-additive estimator and the local linear–additive estimator) are
adaptive to local and global additivity. More precisely, when the model is global additive, the new ones can capture global
additive information and have the same behavior as that of the additive estimator; when the model is local additive, our
estimators can adapt to local additivity and behave as the local additive does; if themodel is completely nonadditive, the new
estimators have the same optimal property (the same convergence rate) as the local linear estimator (or the N-W estimator)
has.

5.4. Models with p = 10

Example 5. We consider the regression function with dimension p = 10 as follows:

r(x) =

10
j=1

x2j + αx1
10
j=2

xj, α = 0, 0.5, 1.
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the globally penalized estimator the local additive estimator

the local N–W –additive  estimator the local linear–additive estimator

a b

c d

e f

Fig. 4. Figures (a), (b), (c), (d), (e) and (f) are respectively the local linear estimator surface, the additive estimator surface, the globally penalized estimator
surface, the local additive estimator surface, the local N-W-additive estimator surface and the local linear–additive estimator surface in Example 2.

For α = 0, 0.5 and 1, the corresponding models are additive, approximately additive and nonadditive, respectively. The
models were studied by [12] as well. In the corresponding regression models, the covariates are uniformly distributed
on [−1, 1] and the error is distributed as N(0, 0.22), and then 2000 observations are obtained. The unconditional mean
averaged squared error (MASE) is approximated with 20 runs of simulation, where the MASE is defined as MASE =
1
n

n
i=1{r̂(xi) − r(xi)}2. To reduce the computational burden, the estimators are evaluated at 50 design points randomly

chosen at each simulation. The resulting relative standard error of the MASE-estimators is about 3%–5%.

Fig. 8 reports the performances of the estimators for the three different values of α, in which the broken curve, the
full curve and the dot curve stand for the MASEs of the local linear estimator, the local additive estimator and the local
linear–additive estimator, respectively. Since the curve of the MASE for the additive estimator is almost the same as that of
the local additive estimator (the full curve), we then use the same curve (the full curve) together with a letter ‘a’ at the end of
the curve to denote the MASE of the additive estimator. The x-axis represents the smoothing parameter; for the local linear
estimator, it is the bandwidth h and for the local additive estimator, it is η, where η is the size of the local region defined
in Section 2.1. From Fig. 8, we see (1) the performance of the local linear estimator is not insensitive to the choices of α but
it has relatively large MASE when the true model is equal to or approximate to an additive model (for α = 0, 0.5); (2) the
local additive estimator adapts to additivity, more precisely, the MASEs are relatively small when the true model is equal
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Fig. 5. Figure (a) is the contour plot of the true regression function. Figures (b), (c), (d), (e), (f) and (g) are respectively the contour plots of the local linear
estimator surface, the additive estimator surface, the globally penalized estimator surface, the local additive estimator surface, the local N-W-additive
estimator surface and the local linear–additive estimator surface in Example 3.

to or approximate to an additive model (for α = 0, 0.5); (3) the local linear–additive estimator exceeds all the others and
adapts to the additivity and nonadditivity (for all the choices of α).
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Fig. 6. Figures (a) and (b) are respectively the 200 random points of X and the true regression surface in Example 4.

Appendix. Proof

Proof of Theorem 1. Part 1: we first prove the conclusions for local linear–additive estimator r̂ (0)
λ,η(x).

(1) In this case, the weights satisfyW1 = 1 + Op(λη) and W2 = Op(λη). Then the conclusion follows directly.
(2) By the methods in [5,12], we have

1
n
X̃′WxX̃ = Σ + Op(τn) and

1
nx

Ũ′(u)WuŨ(u) = Σ + op(τn),

where Σ is a known positive definite matrix and τn = h2
+

1
√
nhp

. Then

W1 = e′

1


I +

λη(x)
nx

I

−1

+ Op(τn), W1 = e′

1


I +

λη(x)
nx

I

−1
λη(x)
nx

+ Op(τn). (A.1)

By the properties of local linear estimator and local additive estimator, we have
β̃(x) = (r(x), ṙ1(x), . . . , ṙp(x))′ + (Op(τn), op(1), . . . , op(1))′,
r̃ad,x(u)|u=0 = (r(x), ṙ1(x), . . . , ṙp(x))′ + (op(τn), op(1), . . . , op(1))′,

(A.2)

where ṙj(x) is the derivative of r(x) with respect to x(j). Then, (A.1), (A.2) and (2.11) together complete the proof for
Theorem 1(2).

(3) It is a direct result of (2.11).
(4) When λη → ∞, the weight functions satisfy

W1 = Op((λη)−1), W2 = 1 + Op((λη)−1). (A.3)

Park and Seifert [12] shows

r̃lad,η(x) = r(x) + Op(ςn), (A.4)

where ςn = h2
+

1√
nηp−1h

, provided that the model is globally additive. Then, (2.11), (A.3) and (A.4) lead to the result of

Theorem 1(4).
Part 2: we now prove the conclusions for local-N-W additive estimator rNWλ,η (x).
(1) The result directly follows from (2.12).
(2) It is known that under the conditions of theorem, we have

n−1
n

i=1

YiKh(Xi, x) = r(x)f (x) + Op(τn), n−1
n

i=1

Kh(Xi, x) = f (x) + Op(τn),

where f (x) is the density function of X and τn = h2
+

1
√
nhp

. On the other hand, Park and Seifert [12] show that if p ≤ 8, then

r̃lad,η(x) = r(x) + Op(ςn),
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the local linear estimator the additive estimator

the globally penalized estimator the local additive estimator

the local N–W–additive estimator the local linear–additive estimator
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Fig. 7. Figures (a), (b), (c), (d), (e) and (f) are respectively the local linear estimator surface, the additive estimator surface, the globally penalized
estimator surface, the local additive estimator surface, the local N-W-additive estimator regression surface and the local linear–additive estimator surface
in Example 4.

where ςn = o(τn). Thus, for the case of λη being bounded, the above results and (2.12) lead to

r̃NWλ,η (x) =
rf + Op(τn) + λη(r + Op(ςn))

f + Op(τn) + λη

=
r(f + n−1λη) + Op(ληςn) + Op(τn)

(f + λη) + Op(τn)

= (f + n−1λη)−1(1 + Op(τn)){r(f + λη) + Op(ληςn) + Op(τn)}

= r + Op(τn), (A.5)

as required.
(3) The result directly follows from (2.12).
(4) When λη → ∞, by (A.5) and (A.4), we have

r̃NWλ,η (x) = r + Op((ηλ)−1) + Op(ςn).

Then we complete the proof. �
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Fig. 8. Figures (a), (b) and (c) are the curves of MASEs according respectively to the models with α = 1, 0.5 and 0. ‘‘- - -’’ is the MASE of the local linear
estimator, ‘‘—’’ is the MASE of the local additive estimator, ‘‘—’’ with ‘‘a’’ is the MASE of the additive estimator and ‘‘· · ·’’ stands for the MASE the local
linear–additive estimator. The positions ‘‘◦’’ are the MASEs valued at the optimal smoothing parameter.
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